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a b s t r a c t

Coarsening from fine geological model to dynamic coarse scale is an essential task in reservoir
simulation. In this paper a new approach is introduced to create a coarse dynamic model based on
effective parameters of fluid flow in porous media. In this technique, the effects of fine scale permeability
map, key flow paths (streamlines) and well location are considered to build a coarse dynamic model
from a fine geological one. An exact element size map is generated by comparing all the mentioned
effective parameters and making the element size indicator by selecting the maximum value. This
element size map (background grid) is applied to build an unstructured mesh for discretization of the
reservoir. Afterward, this intelligent mesh generator was employed in three-phase flow simulation.
Moreover, a novel computational framework is developed for the evaluation of bubble point pressure to
prevent divergence of the solution when the reservoir conditions change. To evaluate the performance of
the developed model, the fluid flow rate obtained by this model is compared to that obtained by the
uniform grid model. It is found that the proposed method provides more accurate results for fluid flow
rate compared to the uniform grid model. Moreover, it is faster and computationally less expensive than
the fine model. This model can be applied in reservoir simulators and provides more accurate and
reliable results in less CPU time compared to the traditional mesh generation techniques. In addition, the
proposed model solves the problem of divergence of the solution at the bubble point pressure.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge of transport processes and accurate calculation of
multi-phase flow play an important role in reservoir simulation.
Study of multi-phase flow in porous media involves non-linear and
coupled partial differential equations (PDE’s) which requires a robust
algorithm for the solution. Many studies have been conducted to
analytically solve PDE’s of multi-phase flow in porous media; how-
ever, the main problem of all analytical methods is that they consider
the flow in porous media as completely immiscible (Juanes and
Patzek, 2004; Shearer and Trangenstein, 1989; Souza, 1992). Strictly
hyperbolic, non-strictly hyperbolic and mixed hyperbolic and elliptic
(Holden, 1990) are the main analytical approaches. To solve PDE’s,
some parameters are required to characterize the fluid, media and

their interactions. To this end, two algorithms can be utilized namely
direct and indirect methods. In the direct methods, these parameters
are obtained using analytical and semi-analytical approaches. On the
other hand, the indirect algorithms are more consistent with experi-
mental data of actual cases (Yeh, 1986). Peaceman (1983, 1987)
extensively studied these algorithms for solving the equations includ-
ing off-center and multiple wells within a well-block, non-square
grids, anisotropic permeability, horizontal wells, and other general
geometries.

Besides the analytical approaches, there are several numerical
methods for solving multi-phase flow problems. Finite difference
(FD) approach, which is widely used, has low computation cost and
is strongly adaptive for structured grids. Staggered-grid finite differ-
ence (SGFD) method improves the accuracy of the results, and reduces
the dispersion effects of the solution. Hassanzadeh (1991) solved the
second order equation of Biot poroacoustic equations with FD scheme.
This method which is actually used for regular grids, may lead to
numerical dispersion. Thus, for the cases such as multi-scale structures
or interfaces with high contrast between physical parameters, the grid
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size should be small enough to assure FD stability conditions. How-
ever, this method may lead to additional computation cost.

Finite volume schemes consist of three different methods, namely
Implicit Pressure-Explicit Saturation (IMPES), Fully Implicit and
Sequential methods among which IMPES scheme is the fastest;
however, it may result in an unstable solution algorithm. In order to
efficiently deal with irregularly geometrical and geological character-
istics, there exists different discretization techniques. First, Aziz (1993)
introduced these techniques. Heinrichs (1987) developed perpendi-
cular bisector method (PEBI). Control volume finite element approach
was then developed by Forsyth (1989) and applied for thermal
simulation of a reservoir. Fung et al. (1991) developed this technique
for other commercial reservoir simulators. Verma and Aziz (1997)
applied this technique to three-dimensional systems. This method
was also applied for black oil reservoir simulation with irregular
shaped grids, and Li et al. (2004a, 2004b, 2003) discussed the stability
of this method using control volume finite element method (CVFE).
Control volume function approximation (CVFA) method is a suitable
technique which is used for interpolation and flux computation. The
priority of CVFA method over CVFE is the application of non-
polynomial functions (e.g., spline, bilinear and weighted distance
functions) which results in establishing flux continuity for arbitrary
shaped control volumes and reducing the grid orientation effects (Li
et al., 2003).

All of the above-mentioned FD and FV methods diverge at bubble
point pressure or converge with so many iterations. Although the
application of the unstructured meshes based on finite element and
finite volume discretization techniques results in flexibility in compu-
tation process, it causes some additional efforts for management of
mesh quality and computational overheads. Since there is deficiency
in the previously published techniques for mesh generation, this paper
aims to propose a novel approach for generating background grid.

In this study, a robust method for generating unstructured grid
along with using spline interpolation function has been described
and applied to discretize the flow equations. Then, this method was
applied for generating an unstructured mesh which establishes flux
continuity in flexible mesh structures and updates the reservoir
properties in a simple and computationally less expensive approach.
In this mesh generation technique, static and dynamic characteristics
of the reservoir are precisely studied. Furthermore, application of the
proposed method in multi-phase flow simulation has been investi-
gated. As known, bubble point pressure is a critical point in multi-
phase simulation of black oil. To prevent the divergence of the
solution at this point, the proposed model accurately estimates the
initial guess for the unknowns of the set of flow equations by solving
a series of material balance equations.

2. Modeling approach

2.1. Permeability filtering

Wavelet–like kernels are used for detection of harsh jumps in
input functions. In this function the area under the curve is zero
which means that a constant function under this filtering would
result in zero. For more details in this area refer to the work of
Hesami and Dabir (2011). For a 2D case, this procedure is applied
to both rows and columns of a two dimensional discrete function.
This generates two energy values that the maximum is stated as
the element size indicator. The mathematical formulation is
developed in the work of Hesami and Dabir (2011):

EMnN ¼ Ei;j
� �

Eij ¼ maxðERi;j; ECi;jÞ

ERi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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j Þ2
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� �
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� � ð3Þ

Kmnn is the input discrete function. R and C are the rows and
transposed columns of the input function. W and H are the discrete
1D wavelet kernel and its Hilbert transform and ERi;j; E

C
i;j; Ei;j are the

row, column and final energy measures. A set of x–y separable
functions and reconstruction formula are shown as follows (Hesami
and Dabir, 2011):

G2a ¼ 0:9213ð2x2�1Þe�ðx2 þy2Þ

G2b ¼ 1:843ðxyÞe�ðx2 þy2Þ

G2c ¼ 0:9213ð2y2�1Þe�ðx2 þy2Þ

Gθ
2 ¼ cos 2 θð ÞG2a�2 cos θð Þ sin θð ÞG2bþ sin 2ðθÞG2c ð4Þ
In which G2a, G2b, G2c are base functions and Gθ

2 is the oriented
second derivative of Gaussian function in θ direction. A set of x–y
separable base is introduced to approximate the complementary H2

Nomenclature

P pressure
∇p pressure gradient
u velocity
ρα density of the component α
Sα Saturation of the phase α
μα viscosity
uα volumetric velocity
Bα formation volume factor
krα relative permeability of phase α
PCOW capillary pressure of oil and water
eij boundary
WI well index
Rs solution gas to oil ratio

Qw;k volumetric flow rate
Pb bubble point pressure
D depth function
Pbh bottom hole pressure
φ0 initial porosity
λ mobility for each phase
ϕ system porosity
νl interstitial velocity of oil
νcr critical value of oil interstitial velocity
Sd desired element size map (Eq. (8))
Sa applied element size map (Eq. (8))
xi inlet coordinate system positions in x direction
xe exit coordinate system positions in x direction
xo local coordinate system positions in x direction
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