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a b s t r a c t

In this paper we discuss the results of the modeling of naturally fractured reservoir based on the
application of the nonlinear autoregressive neural network with exogenous inputs (NARX). We show
that the NARX network can be efficiently applied to multivariate multi-step ahead prediction of reservoir
dynamics. Predictability of the time series is studied using the Hurst exponent. We show that
preliminary clustering of the time series can increase the precision of the forecasting. We evaluate the
proposed approach using a real-world data set describing the dynamic behavior of a naturally fractured
oilfield asset located in the coastal swamps of the Gulf of Mexico. This paper is not only intended for
proposing a new model but to study carefully and thoroughly several aspects of the application of ANN
models to reservoir modeling and to discuss conclusions that could be of the interest for petroleum
engineers.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The reservoir is described by a set of time series (TS) of fluids
from petroleum wells, which are characterized by different start-
ing points and mutual influence. Production performance is both
controlled by the reservoir properties and is also affected by
operational constraints and surrounding wells performance. The
rock and fluid properties of the reservoirs are highly nonlinear and
heterogeneous in nature. The situation is even worse for naturally
fractured reservoirs (NFR), where natural fractures and faults
(created over geologic time) are the primary channels both for
hydrocarbon migration and for water breakthrough and gas
coning. Thus, production TS comprise high-frequency multipoly-
nomial components, represent a long memory process and are
often discontinuous (or piecewise continuous) which make diffi-
cult to get the best model for such data.

Several important tasks of petroleum reservoir engineering are
concerned with the forecasting of oil production. Usually, produc-
tion prediction problem is considered within several different
settings (He et al., 2001). The first is the prediction of existing
wells which is based on that well's previous production data. The
other one is the spatial prediction of a new infill drilling well

which is based on nearby wells' history production data. Finally,
the problem of backward prediction, known as “backcasting”, can
also arise for some brown fields with no record of the measured
wells' production. In this paper, due to the space limits we focus
on the former case.

Traditional methods of forecasting in petroleum engineering
include DCA, black oil model history matching, exploration analo-
gies and exploration trend extrapolations (Weiss et al., 2002).
These tools are based on subjective data interpretation: to pick the
proper slope, to tune the parameters of the numerical simulation
model in such a way that they keep the reasonable values to
interpret reservoir geology.

TS forecasting, along with clustering and classification, is one of
the traditional time series data mining tasks (Batyrshin and
Sheremetov, 2008). Traditional prediction techniques based on
TS analysis usually establish some requirements that should be
fulfilled. For instance, the use of the ARMA method is limited to
stationary TS (the ARIMA model assumes that the data become
stationary after differencing), that implies that the mean, variance
and autocorrelation structure do not change over time (Peña et al.,
2001). Such assumptions do not fulfill for the TS describing the
behavior of the reservoir.

For the past few decades, artificial neural networks (ANNs), among
other artificial intelligence techniques, have been extensively applied
in petroleum engineering due to their potential to handle nonlinea-
rities and time-varying situations along with their ability to learn and
adapt to new dynamic environments (Sheremetov et al., 2005;

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/petrol

Journal of Petroleum Science and Engineering

http://dx.doi.org/10.1016/j.petrol.2014.07.013
0920-4105/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: sher@imp.mx (L. Sheremetov), acosul@imp.mx (A. Cosultchi),

jmmunoz@imp.mx (J. Martínez-Muñoz), agonzal@imp.mx (A. Gonzalez-Sánchez),
marco.antonio.jimenez@pemex.com (M.A. Jiménez-Aquino).

Journal of Petroleum Science and Engineering 123 (2014) 106–119

www.sciencedirect.com/science/journal/09204105
www.elsevier.com/locate/petrol
http://dx.doi.org/10.1016/j.petrol.2014.07.013
http://dx.doi.org/10.1016/j.petrol.2014.07.013
http://dx.doi.org/10.1016/j.petrol.2014.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2014.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2014.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2014.07.013&domain=pdf
mailto:sher@imp.mx
mailto:acosul@imp.mx
mailto:jmmunoz@imp.mx
mailto:agonzal@imp.mx
mailto:marco.antonio.jimenez@pemex.com
http://dx.doi.org/10.1016/j.petrol.2014.07.013


Mohaghegh, 2005; Bravo et al., 2013). Several ANN topologies have
been studied in their application to short-term (1–2 years) univariate
and multivariate prediction of oil production. Though, nonlinear
autoregressive neural network with exogenous inputs (NARX) have
been studied for univariate forecasting of TS (Menezes and Barreto,
2008), their application in multivariable settings in multi-step-ahead
forecasting schemes has not been fully explored yet (Diaconescu,
2008).

In this paper we analyze the problem of flow rate forecasting of
naturally flowing wells under a limited availability of operational
data (irregularities in operational conditions, lack of production
well tests, etc.) by using ANN models. Though we try to summarize
the aspects that should be studied in order to thoroughly validate
the application of the ANN for modeling of the oilfield behavior, in
this paper we take as modest goals (i) analysis of the predictability
of the production TS; (ii) applicability of the univariate and
multivariate forecasting, (iii) analysis of different topologies of
the NARX networks, and (iv) the application of clustering techni-
ques to improve forecasting results. We will not attempt to study
the feature selection process, the prediction capabilities of the
NARX networks to forecast infill wells or thoroughly study long-
term forecasting (for the periods up to 10 years). Obviously, to
properly estimate the utility of the obtained conclusions we would
require many tests.

The rest of the paper is organized as follows. In the next sectionwe
explain the motivation for research emphasizing both application-
related and model-related aspects of production prediction. The basics
of TS forecasting with NARX networks is considered in Section 3.
Section 4 resumes the results of the provided experiments with real
data from Jujo-Tecominoacán oilfield located in the coastal swamps of
the Gulf of Mexico, used to validate the proposed approach. Section 5
provides a review of the related work followed by conclusions.

2. The NARX network in time series forecasting

We start with a short introduction to NARX networks just to
make the motivation for this research more clear.

Recurrent neural network (RNN) is a class of neural network
where connections between units form a directed cycle. This
creates an internal state of the network which allows it to exhibit
the dynamic temporal behavior. Unlike feedforward neural net-
works, RNNs can use their internal memory to process arbitrary
sequences of inputs. RNNs cannot be easily trained for large
numbers of neuron units nor for large numbers of input units.
Successful training has been mostly in time series problems with
several inputs. Such kind of architectures is usually trained by
means of temporal gradient-based variants of the backpropagation
algorithm. However, learning to perform tasks, in which the
temporal dependencies present in the input/output signals span
long time intervals, can be quite difficult using gradient-based
learning algorithms (for networks like Time Delay Neural Network
– TDNN). Learning of such long-term temporal dependencies is
more effective with Nonlinear Autoregressive with eXogenous
input (NARX) architectures because their input vector is built
through two delay lines: sliding over the input and output signals
(Menezes and Barreto, 2008).

The NARX is a recurrent neural network which has been
demonstrated being well suited for modeling nonlinear systems
and specially time series. Compared to classical prediction models
of time series such as linear parametric autoregressive (AR),
moving-average (MA) and autoregressive moving-average (ARMA)
models (Box and Jenkins, 1970) recurrent NN (RNN) with a
sufficiently large number of neurons is a realization of the non-
linear ARMA process (Haykin, 1999). Compared to feedforward
ANN, they have the following advantages: (i) learning is more

effective in NARX networks because the gradient descent is better
and (ii) because of a feedback, these networks converge much
faster and generalize better than other networks (Lin et al., 1996;
Gao and Er, 2005). Embedded memory in recurrent NARX also
helps reducing the effect of vanishing gradient (when the output
of a system at time instant k depends on network inputs presented
at times rook). In our previous paper, we show that NARX ANN
outperformed considerably the traditional TDNN network for the
problem at hand (Sheremetov et al., 2013). That is why NARX
networks are used in this study.

In long-term prediction, the model's output is fed back to the
input for a fixed number of time steps. This way, input compo-
nents, previously composed of actual sample points, are gradually
replaced by predicted values1. The output of the network is

ŷðtþkÞ ¼ f ðuiðt�1Þ;…;uiðt�nÞ; yðt�1Þ; …;

yðt�nÞ; ŷðt�1Þ; …; ŷðt�nÞÞ
where i¼1,…,m.

The transfer function of the network f is the same as that of a
one-output feedforward neural network; for more than one out-
put f should have a subindex i:

f ðUÞ ¼ g ∑wh;jhqðU Þ
� �

where g is the activation function of the output node, hyperbolic
tangent, hyperbolic logarithm or linear, depending upon the sum
of the activation functions of the nodes in the hidden layer. wh,j is
the weight corresponding to the hidden node, h is the number of
the hidden node. hqðU Þ is the activation function of the hidden
node. This activation function h( � )is defined as

hðU Þ ¼ net ∑wi;hui
� �

;

where net is one of the hyperbolic tangent or hyperbolic logarithm
functions:

tanhðxÞ ¼ ex�e� x

exþe� x; loghðxÞ ¼ 1
1þe�x

wi,h is the weight of input i that goes to the hidden node h. ui is the
i-th input to the network, whether any of the input variables or a
feedback.

Linear activation functions are not used in the hidden layer,
since they would not contribute to the nonlinearity of the transfer
function of the network. However, the linear function can be used
at the output node in those cases where the characteristic function
does not contain a very high degree of nonlinearity. In this case the
output layer absorbs the function linearly accumulating the con-
tributions of the nodes of the hidden layers.

TS forecasting is usually performed in two different settings:
(a) in a univariate setting, when the ANN is trained only with the
time series data and (b) in a multivariate setting, when other
variables (static and dynamic nature) are added as additional
inputs. Those variables that change monthly enter the network
just as TS. Variables regarded as static are converted to TS copying
the same values month by month and changing them if any
variation occurs. The process of the selection of the most appro-
priate set of input variables called “feature selection” is out of the
scope of this paper.

In Fig. 1 a network topology is illustrated for the latter case. For
each variable vi there is a number of n delays and the output
forecast k months ahead from the current month. First, based in
former studies on forecasting oil production, it was decided to use
a two-layer feedforward network (Schrader et al., 2005; Menezes

1 If the prediction horizon tends to infinity, from some time in the future the
input regressor is composed only of estimated values and the multi-step-ahead
prediction task becomes a dynamic modeling task while the ANN model emulates
the dynamic behavior of the system.
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