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a b s t r a c t

Heavy oil reservoirs are full of uncertainties because of the difficulties in fluid and core sampling as well
as well testing operations. Therefore, making any decision on development plan of heavy oil reservoirs
under strong uncertain conditions needs risk analysis.

Different thermal processes like steam injection have been used for the recovery of heavy oil. Because
of high steam generation costs, it is necessary to optimize the process. But both risk analysis and
optimization are very time consuming and expensive tasks as they both need too many simulation runs.
Creating a proxy model, which replaces the simulator and emulates simulator outputs very fast, seems to
be a good solution to this problem.

Different static proxy models have been used to-date, which can optimize the process only at one
certain time of simulation and they are not valid for other times. In this study for the first time dynamic
or time dependent proxy models are used for uncertainty analysis and optimization. The term dynamic
or time-dependent proxy model is a response surface of desired objective parameters, which is valid for
the whole time interval of the process.

This study demonstrates the application of artificial intelligence for optimization of steam flooding
using dynamic proxy models. A new time-dependent artificial neural network is introduced as a
dynamic response surface. By coupling this response surface with genetic algorithm, optimum injection
conditions such as steam injection rate, steam quality, and also optimum injection time are obtained in a
no-dip layered heavy oil reservoir. The proposed workflow is a rapid and cost-effective tool for risk
analysis and optimization of steam flooding in heavy oil reservoirs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, many oil companies use thermal processes like
steam flooding and cyclic steam stimulation for the recovery of
moderately viscous heavy oil from sand stone reservoirs (Das,
2007). In steam flooding process, steam is injected into the
reservoir. Injecting steam with sufficient quality and rate is
required for the process to be effective. However, the cost of steam
generation is very high (Hong, 1994). Because of high steam
generation cost, it is necessary to optimize this process before
developing the heavy oil reservoir. Different steam injection
conditions have been recommended by various researchers.
(Hong, 1994; Li et al., 2005). For example, Hong concluded that
optimum steam quality and injection rate in a pattern flood for a
no-dip reservoir appear to be the highest values that can be
obtained for the given heavy oil reservoir (Hong, 1994). In this

study, steam quality, steam injection rate, and optimum time are
optimized simultaneously.

Investigation of oil reservoirs, associating with various uncer-
tain parameters under different EOR methods is a major issue in
reservoir engineering. In heavy oil reservoirs, there are difficulties
in fluid and core sampling as well as well testing operations. As a
result, more uncertainties exist especially during their early
development stages. In such cases, where the decisions about
the entire field development process have to be taken under
strong conditions of uncertainty, a probabilistic analysis seems to
be a better way to proceed rather than a deterministic one (Prada
et al., 2005).

In a risk methodology, geological uncertainties can be combined
in Monte Carlo technique to obtain the range of uncertainty of some
objective functions (Risso et al., 2008). Monte Carlo simulations
require hundreds or thousands of simulation runs to provide mean-
ingful results. Therefore, performing this method for the uncertainty
analysis of reservoir simulation studies is impractical. (Mohaghegh,
2006). Stochastic optimization algorithms such as genetic algorithm
have been used extensively to determine optimum conditions in
different reservoir development problems. Using these algorithms
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requires a lot of simulation runs. Thus, both optimization and risk
analysis are time-consuming and expensive procedures. Alterna-
tively, developing a proxy or response surface such as an artificial
neural network (ANN) or a polynomial regression (PR) model, which
gives outputs close to the simulation results, seems to be an
appropriate technique. Proxy models are extensively used in reser-
voir simulation studies. Polynomial regression models (PR), multi-
variate kriging models (KG), thin-plate splines models (TPS), or
artificial neural networks (ANNs) are examples of proxy models used
in these studies (Zubarev, 2009).

Experimental design can be used to generate a reliable response
surface which covers the whole range of design space (NIST/
SEMATECH e-Handbook of Statistical Methods, 2012). The first
appearance of experimental design in the petroleum industry was in
the early 1990s (Damsleth and Hage, 1991). In addition, ANN has
already been used for forecasting (Huang et al., 2003), optimization
(Queipo et al., 2002), and experimental design also has been applied in
reservoir studies (Prada et al., 2005). A combination of experimental
design and proxy models including ANN and PR models have been
applied in dealing with uncertain systems (Jalali and Mohaghegh,
2009; Murtha et al., 2009).

Genetic algorithm has become very popular in reservoir opti-
mization studies in the last two decades. The focus of these studies
was mostly on well placement problems (Guyaguler and Gumrah,
1999). In addition, Patel et al. (2005) used genetic algorithm for
optimization of a cyclic-steam injection project.

Direct optimization with stochastic optimization algorithms
requires a lot of function evaluations and each function evaluation
requires performing a simulation run. Then the objective function
values can be calculated by using the resulting production data
obtained from the simulation run. The simulation CPU require-
ments for large reservoir models are very high. Many studies were
conducted to reduce this computational expense. Various meth-
odologies were recommended by researchers. Onwunalu et al.
(2008) applied statistical proxies to speed up field development
optimization using genetic algorithm. Bittencourt and Horne
(1997) and Yeten et al. (2002) developed a hybrid algorithm based
on genetic algorithm, Polytope and Tabu search to obtain the best
plan for the oil field development. Stoisits et al. (1999) used a
neural network proxy to represent the components of the produc-
tion system, and then used a simple GA to optimize production.

Different static proxy models have been used to-date, which
can optimize the process only at one certain time of simulation
and they are not valid for other times. In this study for the first
time dynamic or time dependent proxy models are used for
uncertainty analysis and optimization. The term dynamic or
time-dependent proxy model is a response surface of desired
objective parameters, which is valid for the whole time interval of
the process. Although researchers have used proxy modeling
optimization techniques, there is no evidence of time-dependent
proxy modeling optimization in the literature.

This study demonstrates the application of artificial intelligence
for optimization of steam flooding using dynamic proxy models. A
new time-dependent artificial neural network is introduced as a
dynamic response surface. By coupling this response surface with
genetic algorithm, optimum injection conditions such as steam
injection rate, steam quality, and also optimum injection time are
obtained in a no-dip layered heavy oil reservoir. The proposed
workflow is a rapid and cost-effective tool for risk analysis and
optimization of steam flooding in heavy oil reservoirs.

2. Steam flooding model description

In this study, a steam displacement model of distillable heavy
oil used by Aziz et al. (1985), which is a standard tested model and
a pattern model as well, is used with some adjustments. It is an
inverted nine-spot pattern by considering one-eighth of the full
pattern. The model area is about 0.38 acres. Further information
about this SPE model is available in the reference (Aziz et al.,
1985). The introduced workflow has been successfully tested in
real cases, but unfortunately the authors are unable to publish the
results due to the confidentially of the data.

3. Methodologies

The steps of the workflow introduced in this study are as follows:
(1) Definition of objectives and selection of possible uncertain
parameters; (2) performing a screening and sensitivity analysis to
find out the most influential uncertain parameters; (3) dataset
sampling using response surface designs for constructing proxy

Nomenclature

3-Level three level full factorial design
ANN artificial neural network
BB Box–Behnken design
BHP maximum bottom hole injection pressure, psia
CCC circumscribed central composite design
CCF face-centered central composite design
CCI inscribed central composite design
CDF cumulative distribution function
CDNO cumulative discounted net oil, STB
CWE cold water equivalent
FOPT field oil production total, STB
FOSRC field oil steam ratio cumulative
Fs/f steam/fuel ratio
GA genetic algorithm
HEATTX heat transmissibility multiplier in x direction
HEATTY heat transmissibility multiplier in y direction
HEATTZ heat transmissibility multiplier in z direction
MULTPV pore volume multiplier
MULTRV rock volume multiplier

MULTX transmissibility multiplier in x direction
MULTY transmissibility multiplier in y direction
MULTZ transmissibility multiplier in z direction
Np,ns cumulative net sales produced oil, STB
P probability
PR polynomial regression
Qinj steam injection rate, STB/D, cold water equivalent
RE relative prediction error
RSM response surface methodology
RTC rock thermal conductivity, Btu/(ft D 1F)
SQ steam quality
ST steam temperature, 1F
SWCR critical water saturation
T-D time-dependent
y actual response
y' transformed response
yp predicted response by proxy model
ys simulated response
λ applied power transformation
Δt time period for constant Qinj, days
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