
Pressure transient analysis with exponential and power law
boundary flux

Y.N. del Angel a, M. Núñez-López b,n, J.X. Velasco-Hernández c

a Escuela Superior de Física y Matemáticas ESFM-IPN, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco,
Gustavo A. Madero, 07738 D.F., México
b Universidad Autónoma Metropolitana Unidad Lerma, Av. Hidalgo Poniente 46, Col. La Estación, Lerma de Villada, 52006 Edo. de México, México
c Instituto de Matemáticas, Universidad Nacional Autónoma de México Campus Juriquilla, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro 76230, México

a r t i c l e i n f o

Article history:
Received 26 April 2013
Accepted 29 June 2014
Available online 10 July 2014

Keywords:
pressure transient analysis
variable flux at the boundary
well test

a b s t r a c t

The widely used conceptual model set to study flow phenomena in an oil reservoir or groundwater
system has been for several decades the homogeneous cylindrical model with a fully penetrating well
located at its centre. For wells that produce at a constant rate in a bounded reservoir the boundary
conditions are usually zero flux at the outer boundary. In this work we analyze the pressure response in
the presence of flow at the external border, following an exponential or a power law boundary flux. Our
solutions could be used for the analysis and interpretation of the pressure response when it is dominated
by the boundary effects or discontinuities.
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1. Introduction

A fully penetrating well located at the centre of a cylindrical
reservoir producing at a constant rate is the widely used model to
study flow phenomena. Despite this simplified geometry, many
complications in well-test interpretation arise due to inner and outer

boundary effects. For homogeneous reservoirs the pressure response
influenced by the outer boundary effects such as leaky faults, no flow
boundaries, and constant pressure boundaries has been studied by
several authors (Acosta and Ambastha, 1994; Earlougher et al., 1974;
Ehlig-Economides and Ramey, 1981; Fuentes-Cruz et al., 2010).

With regard to heterogeneous reservoirs, there are models
available in the literature that address similar issues like compart-
mentalized reservoirs and geochoke with applications in different
areas such as extraction of crude oils, underground oil displacement,
well drilling, and aquifer contamination. There are models of flow in
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porous media that have considered moving boundary to describe the
transient flow of power law fluids (Pascal and Pascal, 1985). The
variable flow concept has also been studied for non-Newtonian fluids
in bounded and homogeneous domain (Ciriello et al., 2013; Ciriello
and Di Federico, 2012).

The model presented in this paper can be equally considered as
special cases of these compartmentalized reservoirs, the so-called
composite reservoirs consisting of two or more concentric regions
with a single well at the centre. The composite models have been
generalized in different ways, for example, including effects of
various trends of mobility and storativity variations to determine
the swept volume in thermal wells (Acosta and Ambastha, 1994).
Acosta and Ambastha (1994) present a general methodology for
analyzing pressure transient test for composite reservoirs includ-
ing a fractal region between the homogeneous circular region. On
the other hand Corbett et al. (2012) presented a new well testing
response considering vertical influx to reservoir.

These early studies have not considered that influx into the
reservoir is prescribed by the external boundary condition. Doub-
let and Blasingame studied the numerical pressure response and
the transient flow at the well due to the variable flow at the
boundary. In this work we propose a new temporal variable
condition at the external boundary (power law), numerical and
analytical solution is obtained for studying pressure response in
reservoir. The new well test responses are compared with the

pressure curves considering the exponential flux condition at
boundary as proposed by Doublet and Blasingame (1995).

Our physical model is a single well centred in a bounded
circular reservoir with two different conditions at the inner
boundary (constant rate production and constant pressure pro-
duction) for describing pressure behaviour. Additionally a pre-
scribed flux at the outer boundary is considered. This prescribed
flux or variable flow at the boundary means that the influx at the
outer boundary is initially zero changing after a time to a fixed
value following two different ways: exponential and power law.

It is hoped that by incorporating flux at the boundary we can
obtain a better approach to modelling homogeneous reservoirs
(mainly on those modelled as closed ones) with some hetero-
geneity at the external boundary. A closed reservoir is mainly
characterized by an impermeable boundary (no-flow condition).
Starting from this physical concept, the model analyzed here
describes a boundary that provides fluid to the system with a
different rate such that the boundary acts like a low-permeability
boundary. From geological point of view this can be associated
with reservoirs bounded by discontinuities due to agglomerations
of shaly sand facies or shale lenses that obstruct partially or totally
the flow channels as shown in Fig. 1. Discontinuities due to
variations in rock types are not precisely circular, but we assume
a uniform distribution around the boundary as an approximation
(Rosa, 1996). The rationale or motivation for our model is that in
these types of geometries, for example lenses of sand surrounded
by shale barriers or fractures, flow inside the lenses occurs in an
homogeneous rock but restrictions to flow are located at the
boundary where fractures or shale structures induce a subdiffusive
flow into the region under exploitation. This scenario is not purely
theoretic; it is a plausible model in reservoirs such as Chicontepec
(Comisión Nacional de Hidrocarburos, 2010) in Mexico.

In this work we first present the basic theory for a model with
variable flux at the boundary. Second we establish the conditions
under which each of the models with exponential or power law
boundary flux is applicable. Third we present and compare the
analytical and numerical approaches of the pressure response for
both models. Finally we analyze the characteristic behaviour of the
pressure derivative.

2. The basic theory for variable flux at the boundary

One of the basic models for describing fluid flow in cylindrical
porous media is described by the diffusion equation in radial
coordinates given by

∂2p
∂r2

þ1
r
∂p
∂r

¼ϕμct
k

∂p
∂t
; ð1Þ

Nomenclature

Field variables

ϕ porosity, dimensionless
μ fluid viscosity, M=LT
k formation permeability, L2

ct total system compressibility, LT2=R
rw wellbore radius, L
r radial distance, L
R reservoir drainage radius, L
p pressure, M=LT2

pi initial reservoir pressure, M=LT2

q oil flow rate, L3=T

t time, T
h formation thickness, L

Dimensionless variables

pD dimensionless pressure
rD dimensionless radial distance
tD dimensionless time
RD dimensionless reservoir drainage radius
qRD

dimensionless terminal (endpoint) boundary influx
τD dimensionless starting time for boundary influx
α scaling exponent (real number)
HðtDÞ Heaviside function

Fig. 1. Agglomerations around the boundary (either shaly sand facies or shale
lenses) that can obstruct the flow channels at a radial distance R from the well
radius rw.
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