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a b s t r a c t

In this paper, different approaches are employed to study the ramifications of various statistical and
geostatistical parameters (i.e. mean and variance, vertical and horizontal correlation lengths and
covariance function types) on the well-test results. These approaches include analytical, numerical,
and semi-analytical methods, each of which explains the ensemble and/or volume average permeability
of heterogeneous reservoirs from transient tests. In particular, in the numerical method, a few thousand
pixel-based geostatistical permeability realizations, with various parameters, are generated; and the
single-phase flow simulations are performed for each realization. The extracted permeability from the
ensemble well-test response is then related to the underlying statistical and geostatistical parameters of
permeability distribution. In this paper special attention is paid to a well-test response (i.e. a ramp effect)
in a particular heterogeneous reservoir, that is manifested as a steep increase of the well-test derivative
curve. A real test example is also presented to give an intuition as to how the permeable heterogeneity is
reflected in a real problem. This paper provides the necessary practical insight for constructing a link
between the static geological model and the dynamic test data found in highly heterogeneous stochastic
reservoirs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Well-testing is a standard measurement technique of recording
pressure and rate data from a reservoir. The interpretation of the
recorded data provides invaluable information about fluid (e.g.
condensate drop-out near the wellbore) and reservoir heteroge-
neities. For common cases of constant production rate, the
recorded pressure is translated into some diagnostic plots (e.g. a
log–log plot), which facilitate the interpretation and modelling
processes. A log–log diagnostic plot consists of two separate
curves: Δp (pressure drop) and Δp0 (pressure derivative) versus
time, and for a single-rate drawdown case, they are defined as
follows:

Δp¼ pi�pwf ð1Þ

Δp
0 ¼ d½Δp�

d½ log ðtÞ� ð2Þ

where, pi is the initial pressure, pwf is the wellbore pressure
(Bourdet, 2002).

Reservoir properties and different heterogeneities show their
effects on the derivative curve in terms of distinct slopes and
stabilizations. For example, the average well-test permeability is
estimated from the radial flow regime, where the derivative curve

plateaus off over a definite value. This is an average permeability of
a region around the wellbore with a larger scale than the core
measurements (Corbett, 2009). The knowledge of scale relation-
ships help scientists and engineers advance towards a better
understanding of the heterogeneity distribution and averaging
process which assists in finding out how the derived rules from
one scale might be applicable to a different scale (Daltaban and
Wall, 1998).

In this paper, different approaches are employed to describe
the average permeability in the well-test scale. In the analytical
(i.e. stochastic) method the permeability is treated as a random
function. The effective permeability is estimated from analytical
methods using stochastic Darcy's law and the diffusivity equation.
This method helps make some direct analytical conclusions which
aim to relate the average permeability of the investigated media
from the well-test to the geostatistical permeability distribution
parameters. However, this method has limitations while applying
it in 3-D domains and for higher log-permeability variances. The
numerical approach is used as a generalized method to generate
the well-test response and extract the effective permeability for
the higher variances in the multi-layer cross flow (kVa0) and
commingled (kV¼0) reservoirs. In this approach, several 3-D
permeability realizations are generated and the single-phase flow
simulations using Eclipse 100 simulator (Schlumberger, 2011) are
performed to generate the drawdown well-test responses. This
interpretation is based on the ensemble transient tests of all flow
simulations. The numerical simulation of the detailed geological
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model with an arbitrary permeability distribution provides a
unique opportunity to examine the dynamic behaviour of the
model and to explore the effect of different input parameters on
the outputs of the numerical simulations. On the other hand, the
semi-analytical approach considers a single 2-D spatial realization
of the permeability and explains the areal averaging process of the
well-testing. In this method, not only the effective permeability,
but also a permeability-related (i.e. instantaneous permeability)
profile can be estimated.

In this paper, special attention is paid to a particular well-test
response in commingled reservoirs that is called ramp effect
response, where the derivative curve increases by at least
one log cycle and eventually plateaus off over the effective
permeability-thickness product of the system (Corbett et al.,
2012; Hamdi, 2012). The ramp effect is usually associated with
an early and a late time plateaus. The existence of the pressure
derivative stabilizations benefit the reservoir engineering prac-
tice as the average permeabilities can be estimated at each
plateau, while the geology footprint is reflected in the transient
increase of the derivative curve. The slope and shape of the
ramp depend on many geostatistical parameters that will be
discussed in detail in the following sections. A real case will be
presented to highlight the non-uniqueness in well-test solu-
tions and to show how the knowledge acquired in this paper can
be used with a proper interpretation of acquired data in a real
problem.

2. Interpretation methods

2.1. Analytical methods

In the analytical approach, the diffusivity equation is treated as
a stochastic differential equation and the corresponding para-
meters have been assumed to be stationary random functions.
Then, taking the ensemble average of the flow equation and its
boundary conditions one can use the concepts of Green's functions
(Carslaw and Jaeger, 1959; Ozkan, 2006) to obtain the effective
permeability of the medium under certain conditions. The effec-
tive permeability is the permeability, which represents the statis-
tically homogeneous medium at a large scale.

In the absence of the extreme sampled permeability values (i.e.
zero or infinity), the harmonic average is the lower bound and the
arithmetic average is the upper bound of the effective perme-
ability (Cardwell and Parsons, 1945; Dagan, 1989; Renard and de
Marsily, 1997; Deutsch, 2002). The effective single-phase perme-
ability of a porous medium is a general function of the flow
regimes, geology, and the geostatistical parameters (e.g. variance
and the ratios between the length scales characterizing the
covariance function CY¼ ln k (Dagan, 1989)), and is therefore diffi-
cult to represent by simple mathematical form. However, based on
the stochastic approach, and assuming an infinite-domain con-
tains a heterogeneous permeability field, several authors (Dagan,
1993; Paleologos et al., 1996; Tartakovsky et al., 2000; Jankovic et
al., 2003; Sanchez-Vila and Tartakovsky, 2007; Gluzman and
Sornette, 2008) attempted to obtain the effective permeability of
the medium under the steady-state and uniform flow conditions.
In all of these studies, the isotropic permeability was assumed to
be a stationary random function with a lognormal distribution and
finite correlation range. For 1-D and 2-D flow conditions, the
generalization of a perturbation approach, the so called Landau–
Matheron, also known as the Landau–Lifshitz conjecture (Dagan,
1993; Paleologos et al., 1996), was found to be exact. The
conjecture gives the effective permeability of the medium and is

written as follows:

kef f
kG

¼ exp
1
2
�1
D

� �
s2
Y

� �
ð3Þ

kG ¼ expðmY Þ ð4Þ
in which, kG is the geometric average of permeability, keff is the
effective permeability at distances larger than the correlation
length, D is the dimension of space in which flow takes place,
andmY and s2

Y are the mean and variance of Y¼ ln(k). The equation
states that the effective permeability is equal to the harmonic
average or geometric average under 1-D or 2-D flow conditions
respectively. Noetinger (1994) stated that when the number of the
flow dimensions increases (i.e. D-1) the arithmetic average is
obtained. In these situations, the correlation between the pressure
gradient and the permeability can be completely disregarded since
the flow will preferentially avoid the low permeable regions
(Noetinger, 1994). A more comprehensive study was also per-
formed by Noetinger and Gautier (1998). They derived an integro-
differential equation for representing the average test response in
2-D heterogeneous reservoirs. They showed that this equation can
provide the steady-state asymptote approximation at the late
well-test times.

For the 3-D flow condition, the conjecture failed to represent
the exact effective permeability demonstrating that there is a
dependency on the shape of the covariance function (De Wit,
1995). However, Noetinger (1994) showed that the conjecture
holds (but as an approximation), when there is no effect of
correlations between different points in the field. He showed that
the effective permeability of an uncorrelated isotopic lognormal
permeability field in 3-D can be expressed as a power average of
the permeabilities: keff¼〈k1/3〉3 (the bracket “〈…〉” represents the
ensemble averaging operator). This is the same result that was
obtained by Desbratas (1992). Based on the Self-Consistent
Approximation, Dagan (1993) defined the effective permeability
of an isotropic lognormal permeability field in 3-D and 2-D flow
conditions without any restriction on the variance. However, later,
Dykaar and Kitandis (1992) indicated that the underlying assump-
tions for Dagan's approach (1993) were not appropriate for the
porous medium.

To the best of the author's knowledge, for “time dependent”
effective permeability, the published solutions are limited to the
cases of mildly heterogeneous permeability fields in infinite
domains, in which the lognormal permeability distribution has a
small variance compared to unity (Dagan, 1982; Noetinger and
Haas, 1996; Tartakovsky and Neuman, 1998; Zhang, 2001). This
restriction is a stumbling block on the road to applicability of
numerous theoretical analyses to real-world problems (Gluzman
and Sornette, 2008). The transient effective permeability obtained
in this manner is a complex function of time and space and is
dependent on the covariance function of permeability. For the case
of infinite domain, isotropic and exponential covariance function,
the effective permeability can be formulated in a useful mathe-
matical form that can be obtained by the following equations
(Dagan, 1982):

kef f
kG

¼ 1þs2
Y

1
2
�1
D
þβðtÞ

D

� �
ð5Þ

where,

βðtÞ ¼ 1
s2
Y

Z
CY ð x�x

0 ÞGðx; x0
; tÞdx0���� ð6Þ

in which, CY(|x–x0|) is the covariance function, t is time, kG is
geometric average of permeability, D is dimension of flow and G(x,
x0, t) is the transient Green0s function. Using an isotropic covar-
iance function in an infinite domain, two useful conclusions can be
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