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a b s t r a c t

Recently production optimization has achieved increasing attention in upstream petroleum industry.
Here, we evaluate derivative free optimization methods for determination of the optimal production
strategy using a numerical reservoir model which was prepared for a comparative study at the SPE
Applied Technology Workshop in Brugge, June 2008. The pattern search Hooke–Jeeves, the reflection
simplex Nelder–Mead, a new line-search derivative-free and a generalized pattern search methods are
applied to the optimization problem. The line-search derivative-free algorithm is developed based on the
existing line-search derivative free algorithms in combination with the Hooke–Jeeves pattern search
method. The derivative free optimization results are compared with a gradient based sequential
quadratic programming algorithm, but we clearly identify some issues limiting the performance of
gradient based algorithms. In real applications our optimization problem is facing very costly function
evaluations and at the same time one might have limitations in the computational budget. Therefore we
are interested in methods that can improve the objective function with few function evaluations. The
line-search derivative-free method performs more efficient and better than the other optimization
methods. Ranking among the other four methods is somewhat more difficult, except that the Nelder–
Mead method clearly has the slowest performance among these methods. We also observed that
optimization with sequential quadratic programming had a high risk of getting trapped in a local
optimum, which could be explained by properties of the objective function.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hydrocarbon reservoirs are the underground storages of
oil/gas contained in porous rocks and geological formations. The
hydrocarbon-bearing rock is referred to as the reservoir rock with
two main properties: porosity and permeability. Porosity is the
fraction of the rock that can be occupied by the fluids and

permeability is the capability of the rock to transmit the fluids
through the pore spaces. In general, after natural depletion (the
first stage of oil production by natural reservoir drive mechanisms)
a large portion of the hydrocarbon is trapped in the oil reservoirs,
typically more than 60%. The trapped oil in the reservoir is subject
to improved reservoir management. The reservoir management
aims to increase the amount of hydrocarbon that is ultimately
recovered from a reservoir. In line with this issue, production
optimization (also known as reservoir optimization) has recently
attracted increasing attention in the upstream petroleum industry
while the downstream part of the industry is quite mature in this
regard and advanced optimization algorithms are widely used in
the petroleum refineries and petrochemical industry.

An oil reservoir generally contains gas, oil and water phases
with oil as the dominant product. Gas, the lightest, occupies the
upper part of the reservoir rocks; water, the lower part; and oil,
the intermediate section. The oil reservoirs are developed with
some wells to bring the oil to the surface. During the production
phase, improved oil recovery (IOR) methods are designed to
increase oil recovery. Waterflooding is a common IOR method in
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which water is injected into a reservoir through the injection wells
to remove the additional quantities of oil that have been left
behind after natural depletion. The efficiency of a waterflooding
project is affected by the swept volume of the reservoir from the
injectors toward the producers. The geological heterogeneity
(especially the permeability contrasts) of the reservoir layers as
well as the density contrast (between the reservoir fluids, e.g. oil
and water) can reduce the sweep efficiency of the project. In the
last decade, the advances of downhole equipment, such as smart
well completions, allow a better control on the sweep efficiency of
a reservoir by production/injection rate allocation for different
geological layers. Well completion is a term used to describe the
assembly of downhole equipment required to enable safe and
efficient production from an oil/gas well. A smart well completion
refers to the installation of permanent downhole equipment for
production/injection control and consists of some combination of
zonal isolation devices, interval control devices and downhole
control systems. Selective zonal control enables effective manage-
ment of liquid production/water injection from/to the individual
zones. A single production/injection well can be equipped with
several smart completions (making it a smart well).

Traditionally, the general optimal settings of the produc-
tion parameters were determined manually, see e.g. Czyzewski
et al. (1992) and Ko et al. (1995). This requires a combination of
tremendous technical efforts, judgment and experience and can
result in suboptimal solutions. In some of the early reservoir
optimization problems, Asheim (1988) and Virnovsky (1991) used
mathematical optimization algorithms to maximize the net pre-
sent value (NPV) or ultimate oil recovery for simple reservoir
models. Asheim (1988) optimized the well rates to maximize
the NPV from a two-phase (oil and water) reservoir under water-
flooding. Virnovsky (1991) maximized the final oil recovery
for a three-phase (oil, water and gas), two-dimensional model
in homogeneous and heterogeneous porous media. He used
the method of successive linearization to solve the optimization
problem.

Advances in technology and increasing computational power
provide the capability of the simulation of the large scale oil field
models. This motivates the usage of advanced optimization tech-
niques for reservoir optimization problems, see e.g. Brouwer and
Jansen (2004), Sarma et al. (2008), Chen et al. (2010a). Recently,
closed loop reservoir management has led to growing interest in
optimizing the production strategy from a producing oil field using
updated reservoir models. It consists of two main steps: model
updating, also known as history matching or data assimilation to
adjust the reservoir model parameters so that the model repro-
duces the historical behavior, such as production rates and
pressures, of the real reservoir and production optimization to
optimize the future production strategy from the reservoir (Jansen
et al., 2005; Nævdal et al., 2006; Jansen et al., 2008; Wang et al.,
2009). All the above papers suggest using gradient based methods,
relying on an adjoint code for optimization. To develop the adjoint
code one needs to have access to the reservoir simulator, and even
if this is present it is still a cumbersome task to implement this. In
many petroleum companies one uses commercial reservoir simu-
lators ruling out the option of using adjoint solvers in the
optimization. In such a case one might also face limited access to
licenses of a reservoir simulator which restricts the potential of
using distributed computation in the solution of optimization
problems. Reservoir simulations are very time consuming for
many real life problems. Therefore we are particularly interested
in methods that improve the objective function with a limited set
of function evaluations in the optimization process.

In a previous work (Asadollahi et al., 2012) we discussed how
to reformulate a large scale optimization problem to a problem
with an order of 50 optimization variables. Here we will compare

different derivative-free optimization method for solving this
problem.

We present an application of the derivative free methods to a
reservoir optimization problem. Two pattern search methods, the
Hooke–Jeeves (HJ) and the generalized pattern search (GPS), a
reflection simplex method, the Nelder–Mead (NM), and a line-
search derivative-free (LSDF) algorithm are tested and the results
are compared with a derivative based method, sequential quad-
ratic programming (SQP). The HJ method is the recommended
approach of Echeverría Ciaurri et al., 2011 when distributed
computing resources are limited or not available at all. Although
the NM is not well regarded by experts in optimization, it is still
used by many practitioners; therefore we find it illustrative to
include it in the comparison. The GPS is a modern method which
is considered as an attractive choice due to the fact that a proper
convergence analysis can be provided. We propose a new LSDF
algorithm, which aims to improve the performance of the HJ by
doing a better pattern search step by utilizing ideas from line-
search methods described in Conn et al., 2009. Finally, we include
a comparison with a gradient based method, SQP, but as will be
pointed out later on, the directional derivatives might frequently
be zero in this application.

The outline of the remaining part of the paper is as follows:
firstly the optimization methods are described. Thereafter the
optimization problem is clarified and formulated. We describe
the initial guess used as a starting point for the optimization
problem and discuss the step size used in the derivative free
methods. We also discuss the selection of perturbation size for
calculation of finite difference gradients used by SQP and at the
same time illustrate why some of the directional derivatives
become zero in many places. Finally the optimization methods
are applied to solve the optimization problem and the results are
illustrated and discussed.

2. Methods

Fluid flow through porous media is modeled using a mass
conservation equation in combination with Darcy0s equation. The
final equations cannot be solved analytically and discretization
techniques are needed to obtain a numerical reservoir model. The
real numerical reservoir models can have several thousands to
several hundreds of thousands of grid blocks. The physical rock
and fluid properties are attributed to each grid block and the initial
and boundary conditions are provided to the model (Aziz and
Settari, 1979) to solve the flow equations numerically. In general,
due to the diversity and large amount of work and data, different
commercial software packages are used to build the final numer-
ical reservoir model. Thereafter a commercial reservoir simulator
is used to predict the future production from a reservoir. For real
reservoir models, these simulations are computationally demand-
ing. Therefore computation of the gradients of an objective
function with respect to reservoir parameters comes with
a prohibitive cost. Adjoint based optimization is used for solving
large scale reservoir optimization problems. The major advantage
of the adjoint method is obtaining the gradients in a single
additional simulation, independent of the number of variables.
However the implementation of the adjoint methods is not trivial
and is a major programming effort. Moreover, its optimal imple-
mentation requires detailed knowledge of the reservoir simulator
and access to the simulator code (Brouwer and Jansen, 2004;
Sarma et al., 2008). Also automatic differentiation is typically
impossible since the objective function is computed using a
black-box model. In addition, as we show later in this paper, the
finite difference approximation of the gradients might be inap-
propriate and noisy. Hence we use several derivative free methods
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