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a b s t r a c t

We consider the application of the Finite Element Method (FEM) for numerical pressure transient
analysis under conditions where no reliable analytical solution is available. Pressure transient analysis is
normally based on various analytical solutions of the linear one-dimensional diffusion equation under
restrictive assumptions about the formation and its boundaries. For example, the formation is either
assumed isotropic or a restrictive a priori assumption is made about its heterogeneity. The wellbore
storage effect is also often considered without regard to the possibility of phase redistribution. In many
practical situations such restrictions are not justified and analytical solutions do not exist. Here we
present a numerical solution of the nonlinear diffusion equation based on the FEM that can be used
without any restrictive a priori assumptions. Through the use of the weak formulation of the FEM,
solution can be obtained for a heterogeneous medium with discontinuous or nonlinear properties. The
weak formulation also enables the handling of time dependent boundary conditions and hence problems
involving wellbore storage with significant phase redistribution. The speed and accuracy of the
numerical technique is first confirmed by comparison with simple test cases that admit an analytical
solution. The practical utility of the proposed method is then demonstrated for a number of test cases
that involve discontinuous and nonlinear formation properties and/or wellbore storage with phase
redistribution.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The pressure transient response of the reservoir is a widely
used method for reservoir characterization. However, the early time
portion of such data sometimes is infected by wellbore effects. To
discriminate the reservoir portion from the wellbore portion and
extracting a true reservoir parameter, a wellbore model is
required. Currently, there are three types of flow models which
can be used for modeling fluid flow in the wellbore; empirical
correlations, homogeneous models and mechanistic models (Shi
et al., 2005a). Empirical correlations are based on matching of
experimental data and their range of applicability are generally
limited to the range of variables and the particular geometry used
in the experiments (Duns and Ros, 1963; Hagedorn and Brown,
1965; Orkiszewski, 1967; Aziz et al., 1972; Beggs and Brill, 1973;
Ansari et al., 1994). Homogeneous models that sometimes are
called drift-flux models, assume that a single-phase fluid flows in
the wellbore and the properties of this fluid is represented by a
mixture of properties (Shi et al., 2005a, 2005b). Both empirical

correlations and homogeneous models have been developed
mainly for steady state multiphase flow in the wellbore. However,
during the well test, the wellbore condition is generally kept in
single-phase flow and pressure is always changing by time.
Therefore, such wellbore flow models are no longer applicable
for pressure transient analysis. Mechanistic models, however, are
based on the fundamental conservation laws of mass and momen-
tum transfer e.g. Navier–Stokes differential equations. Although,
they are accurate and reliable models and can be used in transient
condition, the computational burden is significant to solve them
and to get reliable solutions. They often encounter convergence
problems and the computation time is remarkably long. For
instance, initializing Navier–Stokes equations and establishing
velocity field in the well, sometimes takes a longer time than
solving the diffusion equation in the reservoir. The computation
time becomes noticeable especially when the coupled wellbore-
reservoir model should be executed for many times to estimate
reservoir parameters (Pourafshary et al., 2009; Khadivi et al.,
2013).

An alternative approach, which is often used for pressure
transient analysis, is considering the well as a boundary condition
instead of a separate model. The accuracy of this method in
representing the wellbore dynamic depends on the equation that
is used as the boundary condition. This type of well modeling is
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fast and reliable to represent wellbore dynamics in various well
conditions. The overall goal of this work is developing an efficient
and fast numerical procedure to handle reservoir heterogeneity in
the presence of wellbore effects.

2. Problem formulation

In this section, we briefly review the governing flow equations
in the reservoir and give the associated weak form.

2.1. Governing equations

Most of the theoretical treatments of pressure transient analy-
sis in well testing consider a well situated in a porous medium of
infinite radial extent and assume that the fluids flow to a central
cylinder (the well) that is normal to two parallel, impermeable
planar barriers. The theoretical analysis is based on simplified
solutions of the continuity equation in the porous medium:

∂
∂t
ðρϕÞþ∇:ðρ u!Þ¼ 0 ð1Þ

where ρ is the density of the formation fluid, ϕ is porosity, u! is
the fluid velocity vector and t is time. Flow of the fluid in the
porous media is assumed to follow the form of Darcy’s law,

u!¼ � k
μ
∇ðpþρg∇DÞ ð2Þ

here, u! is the superficial Darcy velocity vector, p is the reservoir
pressure, μ and ρ are the fluid viscosity and density, g is the
magnitude of the acceleration due to gravity, ∇D is a unit vector in

the direction over which gravity acts and k is the symmetric and
positive definite 3D permeability tensor. Substituting Eq. (2) into
the continuity equation yields,

∂
∂t
ðρϕÞ�∇: ρ

k
μ
∇ðpþρg∇DÞ

 !
¼ 0 ð3Þ

Taking the fluid and rock compressibility as constants,
cf ¼ ð1=ρÞð∂ρ=∂pÞ ¼ constant and cϕ ¼ �ð1=ϕÞð∂ϕ=∂pÞ ¼ constant,
leads to a diffusion equation that describes the temporal and
spatial pressure changes in the 3D reservoir,

ρϕct
∂p
∂t

�∇: ρ
k
μ
∇ðpþρg∇DÞ

 !
¼ 0; ð4Þ

where ct ¼ cf þcϕ is the total compressibility.
It is assumed that the top and bottom surfaces of the reservoir

layer are sealed and a uniform (either constant pressure or no
flow) boundary condition is imposed at the outer limit of the
reservoir. It is further assumed that there is no variation in θ
direction (radial symmetry) and the reservoir is long enough to be
assumed as a single thin layer reservoir. Then with such boundary
conditions, the problem geometrically and physically is a one-
dimensional symmetric problem.

ϕcth
∂p
∂t

�1
r
∂
∂r

kh
μ
r

∂p
∂r

� �� �
¼ 0 ð5Þ

The analysis of the measured pressure transient is based on the
solution of Eq. (5) subject to suitable boundary conditions. In the
case of an isotropic reservoir the following initial and boundary
conditions are often adopted. As the initial condition, the pressure
in the reservoir is assumed to be uniform at a given initial value,
pðr; t ¼ 0Þ ¼ pi. For the outer boundary condition, the pressure
gradient at the outer limit of the reservoir is zero at all times,
ð∂pðr; tÞ=∂rÞ ¼ 0 at re. This may mean that the pressure transient
will not reach to the end of the reservoir, the so-called infinite
acting reservoir. Alternatively, for long durations or small radius
reservoirs it may mean that the reservoir is closed at its outer
limit, n!:∇ u!¼ 0 ðr¼ reÞ.

Depending on the assumptions made regarding behavior
within the wellbore, three major alternatives are used:

Negligible wellbore storage: accumulation of fluid within the
wellbore is ignored all together and the fluid issuing from the
reservoir is withdrawn directly into the wellbore, the so-called line

Nomenclature

CD dimensionless wellbore storage coefficient,
CD ¼ Csð1=2πϕcthr2wÞ

CϕD dimensionless phase redistribution pressure para-
meter, CϕD ¼ Cϕðkh=qBoμÞ

cϕ rock compressibility, Lt2/m, 1/Pa
cf fluid compressibility, Lt2/m, 1/Pa
ct total compressibility, ct ¼ cf þcϕ, Lt

2/m, 1/Pa
Cs wellbore storage coefficient, L4t2/m, m3/Pa
D unit vector in gravity direction, L, m
g the acceleration of gravity, L/t2, m/s2

h reservoir thickness, L, m
k reservoir permeability, L2, m2

k symmetric and positive definite 3D permeability tensor
p reservoir pressure, m/Lt2, Pa
pw wellbore pressure, m/Lt2, Pa
pD dimensionless pressure
pϕD dimensionless phase redistribution pressure,

pϕD ¼ pϕðkh=qBoμÞ
q flow rate, L3/t, m3/s
r radius L, m
rD dimensionless radius, rD ¼ ðr=rDÞ
re external radius of drainage area L, m

rw wellbore radius L, m
S skin factor
t time, t, s
tD dimensionless time, tD ¼ tðk=Þϕμctr2w
u! Darcy velocity (superficial) vector, L/t, m/s

Greek letters

ϕ porosity, %
μ viscosity, m/Lt, Pa s
ρf fluid density, m/L3, kg/m3

τ phase redistribution time parameter, s
τD dimensionless phase redistribution time,

τD ¼ τðk=ϕμctr2wÞ

Conversion factors

bbl �1.589873 E–01¼m3

cp �1.0 E�03¼Pa s
ft �3.048 E–01¼m
psi �6.894757 Eþ3¼Pa
mD �9.86927574528 E�16¼m2

K. Khadivi, M. Soltanieh / Journal of Petroleum Science and Engineering 114 (2014) 82–90 83



Download	English	Version:

https://daneshyari.com/en/article/1755224

Download	Persian	Version:

https://daneshyari.com/article/1755224

Daneshyari.com

https://daneshyari.com/en/article/1755224
https://daneshyari.com/article/1755224
https://daneshyari.com/

