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a b s t r a c t

Most of the reported robust and non-robust optimization works are formulated based on a single-
objective optimization, commonly in terms of net present value. However, variation of economical
parameters such as oil price and costs forces such high computational optimization works to regenerate
their optimum water injection policies. Furthermore, dynamic optimization strategies of water-flooding
often lack robustness to geological uncertainties. This paper presents a multi-objective while robust
optimization methodology by incorporating three dedicated objective functions. The goal is to determine
optimized and robust water injection policies for all injection wells. It focuses on reducing the sensitivity
to the uncertainty in the model and objective function parameters when no measurement information is
assumed to be available. This work also, utilizes a derivative-free Evolutionary Multi-objective
Optimization (EMO) procedure in the form of a Non-dominated Sorting Genetic Algorithm (NSGA)
which attempts to find a robust Pareto-optimal solution without a priori knowledge of the reservoir
dynamic models. Some modifications have been introduced to the original NSGA-II code to handle the
constraints of the optimization problem. The comparative test studies clearly demonstrate superiority of
the proposed methodology to give optimal robust solutions under geological uncertainties with much
less standard deviations and variances. Furthermore, the optimization results demonstrate less
sensitivity to the imposed time-varying economical parameters such as operation costs and oil price,
revealing non-dependency of the introduced multi-objective functions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Water-flooding process

Fundamentally, water-flood involves pumping water through a
well (injector) into the reservoir. The water is forced through the
pore spaces and sweeps the oil towards the producing wells
(producers). The percentage of water in the produced fluids
steadily increases until the cost of removing and disposing of
water exceeds the income from oil production. After this point, it
becomes uneconomical to continue the operation and the water-
flooding is stopped. On the average, about one-third of the original
oil in place (OOIP) is recovered, leaving two-thirds behind after
secondary recovery. Product optimization of water-flooding has
shown a significant potential to increase ultimate recovery
(Brouwer and Jansen, 2004; Jansen et al., 2005; Sarma et al.,
2005; Wang et al., 2007; Sarma et al., 2008). A single objective

function, known as production or net present value, has been
considered as the objective function in all the previous investiga-
tions reported in the literature.

1.2. Uncertainties and robust optimization

Dealing with uncertainty is an important topic encountered in
many fields related to modeling and control. Reducing the uncer-
tainty itself, using measurements and reducing the sensitivity to
the uncertainty are two different strategies which are not basically
conflicting with each other (Van Essen et al., 2009).

Beyer and Sendhoff (2007) in their survey classified modeling of
the uncertainties to deterministically, probabilistically, or possibilisti-
cally. The deterministic type defines parameter domains in which the
uncertainties can vary; the probabilistic type defines probability
measures describing the likelihood by which a certain event occurs.
The possibilistic type defines fuzzy measures describing the possibility
or membership grade by which a certain event can be plausible or
believable. However, a publically-accepted remedy for various tech-
nologies that suffer from vast uncertainties of any above-mentioned
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classes – yet alone with limited measurements – is the use of a
so-called robust optimization.

Since the uncertainties in upstream petroleum industries are
high, conventional optimization strategies are not amenable to
carry over the optimization task deliberately.

Van Essen et al. (2009) presented an approach to reduce the
impact of geological uncertainties in the field development phase
known as a robust optimization (RO). Their proposed RO scheme
uses a set of realizations that reflect the range of possible geological
structures honoring the statistics of the geological uncertainties. The
associated objective function was NPV in terms of a single objective
with pre-defined costs and oil price. They used a classical gradient-
based optimization method where the gradients were obtained with
an adjoint formulation.

The approach of Alhuthali et al. (2010) relies on equalizing arrival
time of the waterfront at all producers using multiple geologic
realizations. They account for geologic uncertainty using two optimi-
zation schemes: a stochastic form which relies on a combination of
expected value and standard deviation combined with a risk attitude
coefficient. This approach is some sort of scalarization of a bi-objective
optimization problem which can be solved by single objective
optimizer engines. Their approach was the analytical computation of
the gradient and Hessian of the objective function.

Almeida et al. (2010) presented an evolutionary algorithm-
based decision support system able to optimize intelligent well
control, in intelligent oil fields, under technical and geological
uncertainties. A genetic algorithm was used for obtaining a pro-
active control strategy and determining an operation that max-
imized the single objective net present value (NPV).

The objective of Chen and Hoo (2012) is to optimize oil
production by managing the amount of water added to a reservoir.
This management is accomplished by employing an optimal
model-based control framework that includes uncertain para-
meter updating and a particular low-order model identified from
a first-principles model.

Nevertheless, to the best of our knowledge, none of the
reported works consider uncertainty in the objective function
parameters. As it is clear, time varying parameters in the objective
function, especially oil price could force a huge persuasion to
recalculate the time-consuming optimization work. In this paper
by introducing three specific objective functions, a new approach

will be proposed to calculate the robust Pareto-front in the defined
multi-objective optimization problems.

Uncertainty of any geological model due to insufficient data is
an inherent characteristic. To cope with the geological uncertainty
in the reservoir, a number of realizations that are equally probable
and reflect the range of possible geological structures, are gener-
ated and robust optimization can be performed based on these
realizations using the specific objective functions.

Reducing the uncertainty using measurement is known as
history matching. In the present study reducing the sensitivity to
the uncertainty was the main goal and optimization was per-
formed in the absence of measurement. Reducing the sensitivity
for two types of uncertainty has been covered through this work:
uncertainty in the reservoir model and uncertainty in the parameters
of the objective functions.

This paper addresses the secondary recovery phase of a
petroleum reservoir using water-flooding based on a multi-
objective robust optimization scheme.

2. Optimization algorithm

Most efficient methods used in solving optimization problems
rely on explicit knowledge of the underlying simulator equations to
compute the gradient of the objective function. As a result of large
and complicated nature of reservoir models with large number of
unknowns and non-linear constraints, the software for gradient
calculations will be very tedious and time-consuming to create for
practical optimization problems. Yet, another major drawback of the
gradient-based methods using adjoint equations is that it requires
explicit knowledge of the simulation model equations describing
the dynamic behavior of the system. By using derivative-free
methods like Genetic Algorithm (GA), no knowledge of the simu-
lator equations is required and the simulator can be run as a black
box. GA does not require any derivative information and is less
likely to be trapped in local minima. It also has the ability to
optimize discrete (and thus non-differentiable) variables such as the
control settings. GA has therefore been utilized as an influential tool
for solution of various problems in reservoir engineering.

Unlike the gradient-based methods, GA typically converges
slowly and becomes inefficient when a large number of variables

Nomenclature

b discount rate (%/year)
E expected value operator
f objective functions
g inequality constraints
h equality constraints
J objective function
J modified objective function
k time-step counter
K total number of time steps
N number of wells
NT total number of realizations
NR number of small set of realizations
q flow rate (m3/day)
r risk aversion factor – price ($/m3)
t time (day)
tk time at time step k (day)
Δtk time interval of time step k (day)
x manipulated variable
θd finite number of realizations

θR representative realizations set
Θ unknown uncertainty space
τI reference time (365 days)
Σθd standard deviation
Φ volumetric ratio

Subscripts

c, o, p cumulative oil production
c, w, i cumulative water injection
i, well injection well
l, p liquid production rate
o oil
o, Total total oil in place
p, well production well
RO robust optimization
w i injected water
w p produced waters
w, p water production rate
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