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a b s t r a c t

Assuming diffusion in the rocks to be anomalous, a flux law that is nonlocal in space and time is used to
develop a mathematical model for fractured rocks drained by a horizontal well produced through
multiple transverse hydraulic fractures. As a result the governing differential equation is fractional in
character. The conductivity of the fractures is assumed to be finite and their properties (width, length,
permeability, etc.) may be variable. Expressions for the well response that produces at a constant rate or
at a constant pressure are derived in terms of the Laplace transformation. Approximate analytical
solutions are derived and the analytical development provides perspectives on short and long-time well
behaviors. In addition to outlining characteristic features of the model, the analytical solutions are useful
in verifying numerical computations. The computational results obtained by the Stehfest algorithm
establish the robustness and viability of the mathematical model. Comparisons with classical diffusion
are noted.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Production of naturally fractured rocks by a horizontal well
through one or more transverse, hydraulic vertical fractures is
considered. As we consider flow in disordered structures with a
complex geology, a flux law that is an asymptotic approximation of
the CTRW process that is nonlocal in time and space is used
(Gorenflo et al., 2002; Paradisi et al., 2001). As a result, the
transient-flow equation contains fractional derivatives. Fractional
derivatives are the consequence of the long-time, long space limit
of CTRW models. This view postulates that diffusion is anomalous.
Other forms of convolved flux expressions such as those noted by
Nigmatullin (1984, 1986) who assumes reservoir-rock properties
to be fractals also lead to fractional derivatives and may be
incorporated in the model considered here. A discussion of
fractional operators may be found in works by Oldham and
Spanier (1974), Miller and Ross (1993), Samko et al. (1993),
Podlubny (1998), Saxena et al. (2006), Hilfer (2008) and
Herrmann (2011) to cite only a few sources.

As is well known three options are available for modeling
fractured rocks: continuum, discrete or hybrid schemes. From a
number of perspectives the continuum approach is adequate and
provides an accurate tool for evaluating well performance. The

conductivity of the hydraulic fractures intercepting the wellbore is
assumed to be finite, and the properties of each fracture such as
length, width, and permeability may be different. Solutions
obtained in this study are compared with the classical diffusion
reported in Raghavan et al. (1997), and the consequences of using
the convolved flux law are demonstrated. That work has been an
invaluable resource over the years. But it is difficult to fully explain
the many trends in production where shear fractures, micro-
fractures in the rock matrix and the like play a dominant role.
Exploring results from models of the kind proposed here may lead
to additional insights and the understanding of the performance of
such systems.

2. Anomalous diffusion: principal considerations

Studies of anomalous diffusion in fractured rocks where the
geometry is complex as a result of fractures and pores are based on
the fact that transients that govern fluid movement in such
structures are defined by a space–time behavior where the second
moment of the transient is of the form

〈r2〉� ta; ð2:1Þ
Where, r is the distance, t is the time, the exponent, a, is a constant
that is less than 1, and the symbol /S represents the second
moment. Early works such as Chang and Yortsos (1990) considered
models based on fractal structures using formulations outlined in
O'Shaughnessy and Procaccia (1985a,b) based on the concept that
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the diffusivity, η, that governs transients is of the form (Gefen
et al., 1983)

ηpr�θ ; ð2:2Þ
where θ40, and a¼ 2=dw, where dw ðθ þ 2Þ is the random walk
dimension (anomalous diffusion coefficient). As may be expected,
(2.2) leads to power-law forms for both permeability and porosity
in terms of the fractal (Hausdorff) dimension, df, random walk
dimension, dw, and the Euclidean dimension, d. Thus the flux law
for the system is given by

q r; tð Þ ¼ kðrÞ
μ

∂pðr; tÞ
∂r

; ð2:3Þ

with the permeability kðrÞ ¼ kcrdf�d�dwþ2 showing an explicit
power-law dependence in space where kc is a system constant.
The asymptotic form of the probability density function (instanta-
neous source function) that is obtained as a result is of the form

p r; tð Þ � t�df =dw exp �c
r

t1=dw

� �dw
" #

; ð2:4Þ

and the solution given by them for the pressure drop for a well
producing at a constant rate in a system of infinite extent may be
expressed in the form of a complementary incomplete gamma func-
tion: Γða; xÞ ¼ R1

x ζa�1 expð�ζÞ dζ. This solution leads to the conclu-
sion that the pressure drop, Δp, at long enough times is of the form
Δp� tα, where α is a constant unlike the conventional expression
Δp� ln t. Many researchers have reported that the flow dimensions
in fractured rocks may be different from 2 if we were to assume
classical diffusion (dw¼2); see, for example, Bangoy et al. (1992),
Hamm and Bidaux (1996), Leveinen et al. (1998) and Riemann et al.
(2002). Further, studies such as Le Borgne et al. (2004, 2007) report a
flow dimension in the range 1.3–1.7 for many interference tests. By
considering responses at all observation wells simultaneously, they
obtain a value of 2.8 for dw. Signatures of the pressure-derivative
curves in field tests shown in Acuna et al. (1995) and Flamenco-
Lopez and Camacho-Velazquez (2001) do provide convincing evi-
dence for models based on transient flow in fractal structures.
Attempts to understand the movement of solutes in fractured rocks

also suggest the need to go beyond classical diffusion; see Haggerty
et al. (2000), Becker and Shapiro (2000) and Reimus et al. (2003).

Recognizing that the basic model in O'Shaughnessy and
Procaccia (1985a,b) is asymptotic in nature, many other forms of
the probability density function have been proposed and explored
as in Giona and Roman (1992) and Metzler et al. (1994), although
Schulzky et al. (2000) indicate that not all of them work for all
time ranges. One such expression of the form

p r; tð Þ � t�df =dw exp �c
r

t1=dw

� �dw=ðdw�1Þ" #
; ð2:5Þ

is frequently noted. Such formulations lead to differential equa-
tions containing fractional derivatives and suggest that a flux law
different from that in (2.3) is required. One form that provides for
this option is

q x; tð Þ ¼�λα
∂1�α

∂t1�α
∇p x; tð Þ½ �; ð2:6Þ

where λα ¼ kα=μ and αo1, and ∂αf ðtÞ=∂tα is the fractional deriva-
tive defined in the Caputo (1967) sense:

∂α

∂tα
f tð Þ ¼ 1

Γð1�αÞ
Z t

0
dt′ðt�t′Þ�α ∂

∂t′
f t′ð Þ; ð2:7Þ

where ΓðxÞ is the Gamma function. Expressions such as (2.6) lead
to a differential equation that contains fractional derivatives. Such
an equation would represent the long time and/or large distance
asymptotic limit of the CTRW process. The advantages of using
fractional derivatives may be found in studies such as Benson et al.
(2000, 2001) to cite only a couple of examples. We may also show
that the exponent, α, plays a role analogous to dw, and that

dw ¼ 2
α
: ð2:8Þ

There is one other advantage for the immediate problem of interest
to us, fractured wells. Extending the observations inherent in (2.3)
and (2.4) is difficult as shown in Beier (1994) for that we need to
consider flow in a system other than a cylindrical geometry; see
Raghavan and Chen (in press). Beier (1994) notes that difficulties

Nomenclature

a arbitrary constant
B formation volume factor (L3/L3)
c compressibility (L T2/M)
D distance between the outer fractures (L)
d Euclidean dimension
df fractal (Hausdorff) dimension
dw anomalous diffusion coefficient (random walk

dimension)
h thickness (L)
KνðzÞ modified Bessel function of order ν
k permeability (L2)
kf permeability of hydraulic fracture (L2)
kα see (2.6)
Lf half-length of hydraulic fracture (L)
ℓ reference length (L)
n number of fractures
p pressure (M/L/T2)
p′ logarithmic derivative (M/L/T2)
q rate (L3/T)
t time (T)
t⋆ time function (see 4.6) (T1�α)
w width (L)

α exponent
ΓðxÞ gamma function
γ Euler's constant (0.5772…)
Σðn;D; Lf Þpseudoskin factor; multiple-fracture system
s pseudoskin factor; single fracture
η diffusivity; various
~ηi diffusivity; see (3.18)
λ mobility; various
μ viscosity (M/L/T)
ϕ porosity (L3/L3)
ϕf porosity of hydraulic fracture (L3/L3)
ψðxÞ Digamma function

Subscripts

D dimensionless
i coordinate, initial
w well bore

Superscript

– Laplace transform
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