Dyes and Pigments 129 (2016) 149-155

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Short communication

S_NAr nucleophilic substitution of 1,9-dihalodipyrrins by S- and N-nucleophiles. Synthesis of new dipyrrins bearing pendant substituents^{*}

Evgenia Leushina, Ksenia Tikhomirova, Anastasiya Permyakova, Pavel Ilin, Maria Terenina, Alexander Anisimov, Andrey Khoroshutin^{*}

^a Chemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Bld. 3, Moscow 119991, Russia

ARTICLE INFO

Article history: Received 24 December 2015 Received in revised form 20 February 2016 Accepted 22 February 2016 Available online 26 February 2016

Keywords: 1,9-dihalo-H-dipyrrins Nucleophilic substitution S-nucleophiles N-nucleophiles UV-Vis spectra NMR

1. Introduction

Dipyrrins (DPs) and their metal complexes [1,2] are attracting much of researchers attention, in spite of being somewhat in the shade of their boron derivatives (BODIPY) [3-6]. DP-metal complexes have been studied to be applied in dye-sensitized solar cells [7–9], catalysis [10] and as new fluorescent dyes [11]. They have been investigated as prospective substances of anti-tumor activities [12–14] Besides, DP-metal complexes can govern the geometry and composition of supramolecular aggregates [15,16] depending on both the mode of metal coordination and the geometry and steric demand of a DP ligand [17–19]. These factors also control the formation of metal-organic frameworks [20,21]. Extensive studies focused on the substituents' influence on the energies of the ground and excited states manifested in their redox properties and optical spectra.[22]. Additional substituents at the periphery of DP, bearing extra complexing groups, had also been shown to change complexes properties dramatically [23,24].

* Corresponding author.

ABSTRACT

5-Aryl-1,9-dichlorodipyrrins react with a series of S- and N- nucleophiles (both alkyl- and aryl- ones). Reagents with mercapto group yield product of double nucleophilic substitution of 5-pheny-1,9-dichlorodipyrrin, i.e. the respective 1,9-bis(alkyl-of arylthio)dipyrrin. On the contrary, 5-(4-nitrophenyl)-1,9-dichlorodipyrrin causes disulfides formation from the S-aliphatic substrates, whereas nucleophilic substitution remains the main path of the reaction for S-aryl ones. The reaction of N-Alkyl nucleophiles proceeds as mono-substitution. UV–Vis spectra feature a batochromic shift for bis-S-substituted products and a hypsochromic shift for mono-N-substituted ones, with respect to the starting dichloroides.

© 2016 Published by Elsevier Ltd.

Known synthetic pathways to substituted DPs include condensation of substituted pyrroles [25-32]. Also, a series of methods such as electrophilic substitution, oxidative couplings, a direct Hsubstitution and halogenation-Pd-catalyzed cross coupling sequences have been shown to work for BODIPY derivatization [33,34] as well as conversion of a methyl group adjacent to the electronegative heterocycle to a double bond and nucleophilic substitution at the BODIPY core [5]. Some examples of these methods applied to non-borylated dipyrrins can also be found in literature [35]. Research groups led by Thompson, Ravikanth and Hao have developed synthetic methods leading to H-dipyrrins based on F-BODIPY deborylation by boron trihalides [36] or other Lewis acids [37], as well as by potassium tert-butoxide [38,39]. However the scope of these methods is rather limited, e.g. dipyrrins possessing groups with substantial Lewis basicity are not reported to stand these BF₂-removal conditions.

On the other hand the account on an aromatic nucleophilic substitution in free dipyrrins is not found in the literature, although there are papers devoted to the reactions of C-, S-, N- and O-nucleophiles with more electrophilic 1,9-dichloroBODIPY [40]. We were interested in access to 1,9-disubstituted dipyrrins that possess additional pendant complexing substituents. 1,9-Modification of the dipyrrin framework was employed for the sterical encumbering to be used in catalysis [27,41], the extension of a π -conjugation

DYES and PIGMENTS

^{*} Part of this work was reported at 6th EuCheMS Conference on Nitrogen Ligands in Coordination Chemistry, Metal-Organic Chemistry, Bioinorganic Chemistry, Materials and Catalysis, Beaune, France, September 13–17.

E-mail address: khorosh@petrol.chem.msu.ru (A. Khoroshutin).

(regulated both by metal complexation [42] and hydrogen bonding [38]), applied in photophysical applications.

This communication reveals the first results of the study. It is aimed at filling this gap, being focused on the either bulky substrates or those possessing additional coordinating substituents. As there is an NH acidic proton in dipyrrin, the reaction of 5-aryl-1,9dichlorodipyrrins **1** with C-nucleophiles is more difficult to study, so at first we limited the scope to N-, O- and S-nucleophiles.

2. Materials and methods

All solvents were distilled before their use. Reagents were purchased from Aldrich and Acros companies, solvents were bought from Reakhim. CH₃CN and triethylamine have been distilled from CaH₂. 1,9-dichloro-5-(4-nitrophenyl)-dipyrromethene, 1,9dichloro-5-phenyl-dipyrromethene [43], methyl 2mercaptobenzoate [44], methyl mercaptoacetate [45], and methyl 3-mercaptopropanoate [46] were prepared according to the literature procedures.

NMR spectra, unless otherwise stated, were recorded on Bruker Avance 400 spectrometer, at 400.13 MHz for ¹H (standard – HMDS, 0.05 ppm) and 100.13 for ¹³C (standard – ¹³C signal of the solvent, 77.0 ppm for CDCl₃). For APT experiments, signals of secondary and quarternary atoms are marked with an asterisk.

LDI-TOF spectra have been collected on Bruker Daltonics Autoflex II spectrometer, samples were irradiated by N₂ laser ($\lambda = 337$ nm), accelerating voltage 19 kV. High resolution mass spectra (HRMS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI) [47]. The measurements were done in a positive ion mode (interface capillary voltage – 4500 V); mass range from *m*/*z* 50 to *m*/*z* 3000 Da; external or internal calibration was done with Electrospray Calibrant Solution (Fluka). A syringe injection was used for solutions in methanol (flow rate 3 µL/min). Nitrogen was applied as a dry gas; interface temperature was set at 180 °C.

TLC has been performed on DC-Alufolien Kieselgel 60 F254 plates (Merck). Kieselgel 60 0.063–0.200 MM (Merck) was used for column chromatography.

UV–Vis spectra were measured on Agilent-8453, in all cases a drop of Et_3N had been added to the sample before measurement. Extinction coefficients were reported for $5 \cdot 10^{-5}$ M concentrations, unless otherwise stated.

2.1. General procedure for nucleophilic substitution

Dichlorodipyrrin (1 eq.) and dry acetonitrile were placed to three necked round bottom flask equipped with magnetic stirring bar, stoppered by rubber septa and flushed with argon *via* needles. Then a solution of the nucleophile (*ca.* 4 eq.) in CH₃CN and triethylamine (*ca.* 6 eq.) have been added by the syringe, reaction flask was immersed into an oil bath heated to 65 °C (unless otherwise specified). After a specified time period, the solvent was removed on rotary evaporator, the residue was dried on the vacuum line at $5*10^{-2}$ Torr at 80–90 °C to remove the base and one of the substrates and processed as cited below.

2.1.1. 1,9-bis(methoxycarbonylmethylthia)-5-phenyl dipyrrin (7). 1a

(8.9 mg, 30.1 μmol) in 4 ml of CH₃CN and **3a** (13.1 mg, 124 μmol) in 6 ml of CH₃CN and Et₃N (17 μl, 12.4 mg, 122 μmol), rxn time 48 h, purified by TCL Al₂O₃ neutral, hexane/CHCl₃ 2:1 + 1% CH₃OH. **7**: (6.4 mg, 14.93 μmol, 49%). ¹H NMR (CDCl₃): δ = 3.79 (6H, s), 3.88 (4H, s), 6.38 (2H, d, *J* = 4.1 Hz), 6.44 (2H, d, *J* = 4.1 Hz), 7.36–7.44 (5H, m) ppm. ¹³C NMR (CDCl₃) δ = 35.56, 52.76, 120.42, 127.60, 128.58, 128.79, 130.77, 134.41, 136.77, 141.76, 147.65, 170.02 ppm.

LDI-TOF: $m/z = 429 \text{ [M+H]}^+$, $467[\text{M+K}]^+$. HRMS (ES): C₂₁H₂₁N₂O₄S₂ Found 429.0921 Calculated 429.0337. $\lambda_{max} = 453 \text{ nm}$ ($\epsilon = 2.4 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}$).

2.1.2. 1,9-bis(2-methoxycarbonylethylthia)-5-phenyl dipyrrin (8). 1a

(25.1 mg, 86.8 µmol) in 10 ml of CH₃CN and **3b** (41.7 mg, 347 µmol) in 4 ml of CH₃CN and Et₃N (48 µl, 35.2 mg, 348 µmol), rxn time 120 h, purified by TCL Al₂O₃ neutral, hexane/CHCl₃ 2:1. **8**: (33.0 mg, 72.3 µmol, 83%). ¹H NMR (CDCl₃): $\delta = 2.73$ (4H, t, J = 7.2 Hz), 2.91 (4H, t, J = 7.2 Hz), 3.69 (6H, s), 6.38 (2H, d, J = 4.1 Hz), 6.44 (2H, d, J = 4.1 Hz), 7.36–7.44 (5H, m) ppm. ¹³C NMR (CDCl₃) $\delta = 28.87^*$, 34.42*, 51.88, 120.77, 127.72, 128.44, 128.64, 130.75, 133.61*, 136.63*, 141.91*, 148.24*, 172.06* ppm. LDI-TOF: m/z = 458 [M]⁺. HRMS (ES): C₂₃H₂₅N₂O₄S₂ Found 457.1242 Calculated 457.1250. $\lambda_{max} = 456$ nm ($\epsilon = 1.9 \times 10^4$ M⁻¹cm⁻¹).

2.1.3. Nucleophilic substitution of **1a** with **3b** – conversion and products distribution

All the experiments have been carried out according to the general procedure. After the evaporation and high vacuum drying reaction mixtures have been analyzed by NMR.

2.1.4. Methyl 3-({(2Z)-2-[(5-chloro-1H-pyrrol-2-yl) (phenyl) methylene]-2H-pyrrol-5-yl}thio)propanoate (7') 1a

(30 mg, 104 µmol) in 8 ml of CH₃CN and **3b** (50.6 mg, 374 µmol) in 2 ml of CH₃CN and Et₃N (54 µl, 39.3 mg, 728 µmol), rxn time 17 h. Reaction mixture has been evaporated to drvness, then oily orange residue has been subjected to heating (95 °C, 40 min) at high vacuum $(1 \cdot 10^{-2}$ Torr) for the nucleophile excess to be dried off. The product was isolated by column chromatography (SiO₂ neutral, petroleum ether/ethyl acetate 4:1). 7': (13.5 mg, 34.8 µmol, 33%).): ¹H NMR (CDCl₃) δ = 2.83 (2H, t, J = 7.2 Hz), 3.31 (2H, t, J = 7.2 Hz), 3.72 (3H, s), 6.33 (1H, d, J = 4.2 Hz), 6.48 (1H, d, J = 4.2 Hz), 6.25 (1H, d, J = 4.2 Hz), 6.54(1H, d, J = 4.2 Hz), 7.40 (5H, m). ppm. 13 C NMR $(CDCl_3) \delta = 28.63, 29.28, 33.92, 51.5, 8, 117.53, 118.64, 127.36, 128.68,$ 130.37, 135.62, 171.51 ppm. LDI-TOF: *m*/*z* = 373 [M]⁺. HRMS (ES): Found 373.0778 $C_{20}H_{20}CIN_2O_2S$ Calculated 373.0772. $\lambda_{\text{max}} = 454 \text{ nm} (\epsilon = 0.9 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}).$

2.1.5. 1,9-bis(4-methylphenylthia)-5-phenyl dipyrrin (9). 1a

 $(14 \text{ mg}, 48.4 \mu \text{mol})$ in 8 ml of CH₃CN and **4** (24.1 mg, 194 \mu mol) in 2 ml of CH₃CN and Et₃N (27 µl, 19.7 mg, 194 µmol), rxn time 20 h (at 64 °C). Purified by column chromatography SiO₂, CCl₄. 9: (21 mg, 45.2 μ mol, 93%). ¹H NMR (CDCl₃): δ = 2.30 (6H, s) 6.27 (2H, d, J = 4.1 Hz), 6.44 (2H, d, J = 4.1 Hz), 7.13 (4H, d, J = 8.1 Hz), 7.33 (4H, d, J = 8.1 Hz), 7.37–7.41(5H, m), 12.2 (broad s, 1H) ppm. ¹³C NMR $(CDCl_3)$ $\delta = 21.23$, 120.35, 127.64, 128.45, 128.57, 129.26^{*}, 130.16, 130.75, 131.65, 134.46*, 136.66*, 136.66*, 138.14*, 141.91* ppm. LDI-TOF: $m/z = 465 [M+H]^+$. HRMS (ES): $[M+H]^+ C_{29}H_{24}N_2S_2$ Found 465.1464 Calculated 465.1454. 462 nm λ_{max} = $(\varepsilon = 2.1 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}).$

2.1.6. 1,9-bis(2-methoxycarbonylphenylthia)-5-phenyl dipyrrin (10). 1a

(14.6 mg, 50.5 μmol) in 8 ml of CH₃CN and **5** (43.8 mg, 260 μmol) and Et₃N (27 μl, 19.7 mg, 194 μmol), rxn time 72 h (at 76 °C). Purified by column chromatography SiO₂, hexane-EtOAc 4:1. Dried residue was chromatographed on Al₂O₃, hexane-EtOAc **10**: (23 mg, 41.6 μmol, 82%). ¹H NMR (CDCl₃): δ = 3.91 (6H, s), 6.44 (2H, d, J = 4.4 Hz), 6.52 (2H, d, J = 4.4 Hz), 7.10–7.14 (2H, m), 7.21–7.27 (4H, m), 7.38–7.47 (5H, m), 7.85 (2H, dd, J = 7.8 Hz, 1.1 Hz) ppm. ¹³C NMR (CDCl₃) δ = 29.68, 52.25*, 122.60*, 126.50*, 127.73*, 128.65*, 128.79*, 129.55, 130.82*, 130.87*, 132.34*, 134.56, 136.54, 137.13, 147.03, 166.80 ppm. LDI-TOF: m/z = 465 [M+H]⁺. HRMS (ES):

Download English Version:

https://daneshyari.com/en/article/175541

Download Persian Version:

https://daneshyari.com/article/175541

Daneshyari.com