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a b s t r a c t

Streamline simulation has been developed as an alternative to conventional Eulerian methods for the

simulation of multiphase fluid flow in oil and gas reservoirs. In streamline simulation the saturation

equations are solved over streamlines as a function of time-of-flight (TOF).We present a parallel

implementation of this method. Furthermore, to increase the accuracy and speed of simulation, a new

method called space–time conservation element and solution element (CE/SE) is implemented to solve

the saturation equations along streamlines. CE/SE has many non-traditional features, including a

unified treatment of space and time and stable numerical behavior with no need to introduce total

variation diminishing schemes. As flux is a time–space property, in CE/SE, both time and space are

discretized and treated on the same footing. In CE/SE, parameters and their derivatives are considered

as independent variables and are computed simultaneously at each time-step that leads to local and

global flux conservation. In addition by introduction of solution element and conservation element, cell

fluxes can be calculated without extrapolation. To show the strength of method, the Buckley–Leverett

equation is solved using CE/SE and compared to the finite volume method (FVM). Then, the method is

employed in a streamline simulator to simulate water injection in a heterogeneous oil reservoir. CE/SE

can capture the correct solution better than the FVM especially near sharp fronts. Though CE/SE is a

second order method, its accuracy is higher than the third order Leonard’s scheme and its order of

convergence is higher than current methods in the literature. In addition, the simulation time of CE/SE

is about 10 percent lower than the other second and third order methods we test.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of fluid flow in oil and gas reservoirs using
streamline techniques is now widely employed for reservoir
modeling studies. Excellent speed and efficiency, computation of
new valuable engineering data, flow visualization (Thiele, 2005),
complex and full field modeling ability on fine-scale geological
models (Batycky et al., 1997) and easy parallel processing poten-
tial (Batycky et al., 2010) are some of its advantages over
conventional grid-based techniques.

Streamline simulation has many applications in petroleum
engineering. This method is used for history matching (Cheng
et al., 2005,, 2007), upscaling problems, flood surveillance, flood
management (Thiele et al., 2010b), fractured reservoir simulation
(Al-Huthali and Datta-Gupta, 2004; Di Donato et al., 2003; Huang

et al., 2004), hot water flooding (Zhu et al., 2010) and polymer
flooding (Thiele et al., 2010a). For detailed information about
streamline simulation theory and its application, the reader is
referred to (Batycky et al., 1997; Datta-Gupta and King, 2007).

In a conventional finite-difference or finite-volume method, the
governing equations are solved in 3D on a fixed (Eulerian) grid. In

contrast, in streamline simulation, by introducing the time-of-flight

concept, the saturation equation is decoupled into a set of one-

dimensional equations along streamlines and multiple one-

dimensional equations are solved along streamlines. As a result, in

streamline simulation a dual-grid method is applied to solve the fluid

flow equations: an Eulerian grid to solve the pressure equation and

trace the streamlines which is called the ‘‘pressure grid’’, and the 1D

‘‘streamline grid’’ to solve the saturation equations over them. This

methodology is successful because the time step size to update the

pressure field can often be much larger than the time increment for

the solution of the saturation equation along streamlines. Hence, by

solving the pressure equation once, the saturation equation can be

solved along streamlines for a long time. Furthermore, it is easy to

extend the method to 3D using a semi-analytical method to trace

streamlines and compute the time-of-flight (Pollock, 1988).
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The transport equation is a hyperbolic equation and often its
solution features discontinuities. This means that the method of
solution must be capable of capturing shocks and high gradient
regions. First order finite difference or finite volume methods are
easy to implement, but it is necessary to use a fine grid in order to
capture sharp gradients. In addition, explicit methods are limited
by the CFL2 condition and application of the fine grid leads to
small time steps and increases the solution time. High order
methods can capture sharp gradients without needing fine grids.
In these methods, local flux/slope is estimated based on neighbor-
ing node values. As the gradients are high around shocks, the flux/
slope is predicted erroneously in these regions leading to spurious
oscillations (Datta-Gupta and King, 2007). Such spurious oscilla-
tions can be eliminated by flux/slope limiting methods3 (Van Leer,
1997).

Chang (1995), Chang and To (1991), Chang et al. (1994,, 1999,,
2000) introduced a new method for solving conservation laws
over Eulerian grids that is called ‘‘Space–Time Conservation
Element and Solution Element’’ (CE/SE). CE/SE is designed to
avoid the limitations and weaknesses of the traditional methods.
Nevertheless, its foundation is sufficiently mathematically simple
that one can build from it a coherent, robust, efficient, and
accurate numerical framework. Two basic features that set the
new method apart from the established methods are at the core of
its development (Chang et al., 1999). The first idea is that, in order
to capture physics more efficiently and realistically, the modeling
focus should be placed on the original integral form of the
physical conservation laws, rather than the differential form.
The latter form follows from the integral form under the addi-
tional assumption that the physical solution is smooth, an
assumption that is difficult to realize numerically in a region of
rapid change, such as shocks. The second idea is that, with proper
modeling of the integral and differential forms themselves, the
resulting numerical solution should automatically be consistent
with the properties derived from the integral and differential
forms, e.g., the jump conditions across a shock and the properties
of characteristics. Therefore, a simple and more robust method
can be developed by avoiding the explicit use of the above derived
properties.

CE/SE has some new features and advantages over common
numerical methods. In traditional methods, the mesh is generated
only for the space domain and averaged values in time are used to
estimate flux. In contrast, as flux is fundamentally a time–space
property, CE/SE uses a time–space grid and both time and space
are treated in a unified manner. By this treatment, flux can be
estimated as a function of time and space that is consistent with
the physics of the problem. In the CE/SE method, all independent
variables and their derivatives are considered as unknowns in
each grid point and are computed simultaneously at time–space
nodes. This feature is very important, because both individual
parameters and their derivatives are computed such that flux can
be conserved locally and globally all over the time–space domain.
Consequently, flux/slope limiting methods are not needed any-
more in order to prevent spurious oscillations caused by erro-
neous estimated flux. CE/SE introduces two types of elements:
solution element (SE) and conservation element (CE). Integration
is performed over CE boundaries and parameters are defined on
SE. SEs construct boundaries of CEs, thus solution variables are
available on boundaries of CEs for integration, in contrast to FVM
that uses approximate extrapolated/interpolated face values for
integration. These features enable CE/SE to capture shocks

without using Riemann solvers and to predict discontinuities
accurately.

Overall CE/SE is beneficial for the solution of conservation
equations, especially in problems with discontinuous profiles.
Numerous highly accurate solutions of conservation laws such
as advection and diffusion (Wang et al., 1995), Navier–Stokes
(Chang, 1995; Zhang et al., 2002), magneto-hydrodynamics
(Qamar and Mudasser, 2010; Qamar and Warnecke, 2006;
Zhang et al., 2006), heat transfer (Yang et al., 2009) and fluid
flow in porous media (Yang et al., 2009) have been obtained using
the CE/SE method.

Despite these excellent advantages, the CE/SE has not been
developed like other well-known numerical methods. It is due to
one major disadvantage, the complexity of the topology of the 3D
time–space grids. Hence, despite the superior capabilities and
features of the CE/SE method, it is easier to implement other
numerical methods to solve the governing equations. In this work
we avoid these problems, since transport equations are solved
only in 1D.

Streamline simulation is used to simulate two-phase (water–
oil) flow in a heterogeneous reservoir. The Visual Studio Parallel
Pattern Library (PPL) is applied to parallelize streamline simula-
tion simply and efficiently. By coupling CE/SE with streamlines,
the major disadvantage of the CE/SE method can be eliminated
and its advantages can be used to improve the accuracy and
efficiency of the simulation. Accordingly, in order to increase the
accuracy and speed of reservoir simulation, CE/SE is proposed to
solve the saturation equation over streamlines. In following, first
the accuracy and performance of the method are analyzed for the
solution of the hyperbolic transport equations over a specific
streamline. Then the effect of the method implementation on
accuracy and performance of multi-dimensional streamline simu-
lation is investigated.

Streamline simulation is explained briefly in the proceeding
section. In Section 3, solution methods of saturation equation are
discussed. In Part 3.1, the finite volume method is explained, in
Part 3.2 CE/SE is described and in Part 3.3 appropriate boundary
conditions for the CE/SE method are developed. Section 4 focuses
on the results of the CE/SE method and presents a comprehensive
comparison of CE/SE and FVMs.

2. Streamline simulation

Streamline simulators are based on the implicit pressure, explicit
saturation (IMPES) approach to solve the governing conservation
equations. The general conservation equation is represented by the
pressure and saturation equations. This technique relies on six key
principles: 1—solution of pressure equation and calculation of total
velocity 2—tracing of streamlines in a velocity field (Pollock, 1988)
3—writing the mass conservation equations in terms of time-of-flight
(TOF) 4—numerical solution of conservation equations along stream-
lines 5—periodic updating of the streamlines and 6—operator split-
ting to account for transverse flux effects (Bratvedt et al., 1996). More
details of this method can be found in related references (Batycky
et al., 1997; Datta-Gupta and King, 2007). The method is explained
here in brief.

Initially, the pressure equation (Eq. (1)) is solved under the
steady state condition.

r � kðltrPþlgrDÞ ¼ 0 ð1Þ

where k is permeability, D is depth, lt is total mobility and lg is
total gravity mobility.

The total velocity is then computed using the Darcy’s law
(Eq. (2)) and thus streamlines are traced, by implementing the

2 Courant Friedrich Levy.
3 Sometimes called TVD methods.
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