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We study the two-dimensional steady, laminar flow of an incompressible, viscoelastic fluid with species
diffusion in a parallel plate channel with porous walls containing a homogenous, isotropic porous medium
with high permeability. The Darcy model is employed to simulate bulk drag effects on the flow due to the
porous matrix. The upper convected Maxwell model is implemented due to its accuracy in simulating highly
elastic fluid flows at high Deborah numbers. The conservation equations are transformed into a pair of couple
nonlinear ordinary differential equations which are solved numerically using efficient 6th order Runge–Kutta
shooting quadrature in the computer algebra package system MAPLE. The effects of Darcy number (Da),
Deborah number (De), Schmidt number (Sc) and transpiration Reynolds number (ReT) on velocity and
species concentration distributions and also wall shear stress and concentration gradients are examined in
detail. The study finds applications in petroleum filtration dynamics, hydrocarbon fluid flow in geosystems, oil
spill contamination in soils and also chemical engineering technologies.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Viscoelastic flows are encountered in numerous areas of
petrochemical, biomedical and environmental engineering includ-
ing polypropylene coalescence sintering (Scribben et al., 2006),
dynamically-loaded journal bearings (Tichy, 1996), blood flow
(Chien et al., 1975; Vlastos, 1998) and geological flows (Wouter et
al., 2005). A wide range of mathematical models have been
developed to simulate the nonlinear stress–strain characteristics
of such fluids which exhibit both viscous and elastic properties. A
detailed discussion of such models which include the upper
convected Maxwell model, the Walters-B model and the Reiner–
Rivlin second-ordermodel is provided in Zahorski (1982). For highly
elastic fluids such as polymer melts, the upper convected Maxwell
(UCM) model has proved to be very reliable. This viscoelastic flow
model is a generalization of the Maxwell material model for the case
of large deformations and was derived by Oldroyd using an upper
convected time derivative (Oldroyd, 1950). Many theoretical,
numerical and experimental studies have utilized this model.
Horikawa (1987) presented finite difference solutions using a
perturbation method for the flow of a UCM fluid around an inclined
circular cylinder of finite length showing that the viscoelastic tends
to flow axially in the vicinity of the cylinder. Chiba et al. (1988)
investigated analytically the effects of a wall transpiration of the
UCM fluid flow via a porous-walled tube. Larson (1988) used a

similarity transformation to model the UCM flow in an infinitely
long cylinder whose surface has a velocity that increases in
magnitude linearly with an axial coordinate showing that with an
increasing elasticity of the fluid normal stress gradients in an elastic
boundary layer near the accelerated surface aid in offseting
inertially-generated negative axial pressure gradients. Roberts and
Walters (1992) obtained spectral numerical solutions for the three-
dimensional flow of a UCM fluid in a journal bearing, operating
under static loading conditions, showing that a relaxation time of the
order of 10−4 s is needed prior to viscoelasticity enhancing the load-
bearing capacity. Maders et al. (1992) used a decoupled finite
element method to study the flow of a polymeric UCM fluid in a 2-
dimensional convergent geometry. Brown et al. (1993) have studied
the linear stability of the planar Couette flow of a UCM fluid using a
mixed finite-element method obtaining stabile calculations for the
values of the Deborah number in excess of 50. Khayat (1994) used a
perturbation technique to analyze the two-dimensional incom-
pressible viscoelastic UCM flow between two parallel plates, with
two straight free boundaries. The hyperbolic partial differential
equations were solved using an implicit finite-difference procedure.
Rahaman (1997) investigated the transient UCM viscoelastic flow in
a rectangular duct. Avgousti and Renardy (1998) studied computa-
tionally the hydrodynamic stability of the eccentric Dean flow of a
UCM fluid. Xue et al. (1998) employed a 3-dimensional finite volume
numerical solver to model Lagrangian transient extensional flow of
both a Phan-Thien Tanner (PTT) viscoelastic and a UCM viscoelastic
fluid in a rectangular duct with a sudden contraction is carried out
using a three-dimensional (3-D) finite volume method (FVM).
Further studies of the viscoelastic UCM flows were described by
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Van Os and Gerritsma (2001); Ghosh and Sengupta (2002) with
magnetohydrodynamic effects and from a continuous stretching
surface by Sadeghy et al. (2005). Evans (2005) discussed the steady
planar flow of the UCM fluid for the re-entrant corners with obtuse
angles, obtaining a class of similarity solutions associated with the
inviscid flow equationswhich arise from the dominance of the upper
convective stress derivative in the constitutive equations. He also
identified two classes of the boundary-layer structure, namely the
Renardy single-layer structure and a new double-layer boundary
layer structure. Sadeghy et al. (Sadeghy, 2006) used a Chebyshev
pseudo-spectral collocation-point method to simulate the two-
dimensional stagnation-point flow of the UCM viscoelastic fluid
indicating a thickening of the boundary layer and a drop in the wall
skin friction coefficient with higher elasticity effects. Hayat et al.
(2006) used the homotopy analysis method to obtain series
solutions for the hydromagnetic boundary layer flow of a UCM
fluid over a porous stretching sheet.

The above studies all omitted any consideration of porous media
despite the frequent presence of such media in many petroleum and
chemical engineering operations and systems. Filtration systems,
petroleum geosystems, packed bed reactors and foodstuffs are several
examples of porous media in which viscoelastic flows may occur.
Generally the Darcy model is employed for low-velocity flows in
porousmedia and relates the pressure drop in the porousmedium to a
linear drag force. Wissler (1971) gave the first analytical explanation
for the elongation stresses developed in the viscoelastic flow in a
Darcian porous medium, presenting a third-order perturbation
analysis and showing that viscoelastic (e.g. polymer and hydrocarbon
derivatives) experience a reduced mobility in porous media. James
and Mclaren (1975) discussed experiments relating to the measure-
ments of the pressure drop and flow rate for dilute viscoelastic

solutions of polyethylene oxide flowing through beds of packed beads
i.e. porous media, showing that viscoelasticity was most prevalent at
moderate flow rates. A reduced viscoelastic effect at higher flow rates
was attributed to the dominance of extensional stresses in this
regime. Deiber and Schowalter (1981) performed experiments on the
flow of dilute aqueous solutions of a polyacrylamide in a tube with
sinusoidal axial variations in diameter as a porous medium flow
model, showing that Lagrangian unsteadiness generates an increase in
resistance to flow through the sinusoidal channel relative to that
predicted for a purely viscous fluid. Two other excellent investigations
of the viscoelastic flow in Darcian porousmedia include the articles by
Durst et al. (1987) and the finite element study by Talwar and
Khomami (1992). Tan and Masuoka (2005) used a modified Darcy's
law for the Oldroyd-B viscoelastic fluid to study Stokes' first problem
in a porous half space using a Fourier sine transform. They found that
the boundary layer thickness has a limited value and deviates from
the purely fluid case. Several studies have considered specifically the
flow of Maxwell viscoelastic fluids in porous media. De Haro et al.
(1996) used a volume averaging approach to study Maxwell flow in a
rigid porous medium deriving the momentum equation with a time-
dependent permeability tensor. They simulated the viscoelasticity
effects by transforming the model to the frequency domain via a
temporal Fourier transform and presented closed-form solutions for a
porous medium modeled as a bundle of capillary tubes. Other studies
include the papers by del Río et al. (1998) and Lopez et al. (2003).
Numerous technological applications exist wherein both viscoelastic
flow and mass (species) diffusion take place, including the separation
systems, polymer processing, haemodynamics, petroleum displace-
ment in reservoirs etc. Flows may be both laminar or turbulent. Cho
and Hartnett (1981) employed the successive approximation tech-
nique to investigate the mass transfer entry length and maximum
mass transfer reduction asymptote for the drag-reducing viscoelastic
fluids obtaining a good correlation with the empirical mass transfer
results for the predicted mass transfer rates and showing approxi-
mately 56–75% reduction in the mass transfer rate compared to the
Newtonian values at the same Reynolds and Schmidt numbers. The
transient species transfer in a viscoleastic tube flow was studied by
Dalal and Mazumder (Dalal, 1998). Lo et al. (2003) studied the mass
diffusion in curdlan viscoelastic gels. A detailed analysis has also been
presented by Ramakrishnan (2004) of the non-Fickian species
transfer in the polymeric viscoelastic flows. Herein we extend to
consider the non-reactive version of the study of Hayat and Abbas
(2007) but with the porous drag effects considered, to present
extensive numerical solutions to the flow and dispersion of a species
in a UCM viscoelastic-fluid saturated regime between the parallel
plates and wall transpiration. The case of the low Deborah number
(De) i.e. weak elasticity, is considered. The shooting iteration
technique together with the Runge–Kutta sixth-order integration
scheme is employed to solve the transformed system of the nonlinear
ordinary differential equations. Such a study we believe constitutes an
important addition to the literature on the rheological flows in the
petroleum geosystem applications.

2. Hydromechanics of the UCM viscoelastic fluid

Zahorski (1982) has discussed extensively the mathematical
aspects of the UCM viscoelastic model. This model is the most
elementary of the nonlinear viscoelastic models which accounts for
frame invariance in the nonlinear flow regime. It amounts to a
succinct amalgamation of the Newtonian law for viscous fluids and
the derivatives of the Hooke's law for elastic solids and cannot
simulate more complex effects which are reproduced in the more
elaborate viscoelastic formulations. Nevertheless in simple engi-
neering flows, the UCM model is easily implemented and leads to
relatively fewer stability and convergence problems in computa-
tion. The UCM model simulates purely elastic fluids with shear-

Notation

C concentration of species diffusing in fluid
Cw concentration at channel center (y=0).
CH concentration at both plates

(i.e. at y=H/2, y= −H/2)
D species diffusivity
H channel width
K permeability of the porous medium
u velocity in x-direction
v velocity in y-direction
V/2 suction velocity at the plates
x coordinate along channel center-line

(parallel to plates)
y coordinate normal to channel center-line
λ relaxation time of the UCM fluid
ν kinematic viscosity of the UCM fluid

Dimensionless parameters
Da Darcy number
De Deborah number
F dimensionless stream function
ReT transpiration (suction) Reynolds number (N0)
Sc Schmidt number
X dimensionless coordinate along channel center-line

(parallel to plates)
Y dimensionless coordinate normal to channel

center-line
ϕ dimensionless concentration function
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