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Inverse problems associated with reservoir characterization are typically under-determined and often have
difficulties associated with stability and convergence of the solution. A common approach to address this
issue is through the introduction of prior norm constraints, smoothness regularization or reparameterization
to reduce the number of estimated parameters.
We propose a dual scale approach to production data integration that relies on a combination of coarse-scale
and fine-scale inversions while preserving the essential features of the geologic model. To begin with, we
sequentially coarsen the fine-scale geological model by grouping layers in such a way that the heterogeneity
measure of an appropriately defined ‘static’ property is minimized within the layers and maximized between
the layers. Our coarsening algorithm results in a non-uniform coarsening of the geologic model with minimal
loss of heterogeneity and the ‘optimal’ number of layers is determined based on a bias-variance trade-off
criterion. The coarse-scalemodel is then updated using production data via a generalized travel time inversion.
The coarse-scale inversion proceeds much faster compared to a direct fine-scale inversion because of the
significantly reduced parameter space. Furthermore, the iterative minimization is much more effective
because at the larger scales there are fewer local minima and those tend to be farther apart. At the end of the
coarse-scale inversion, a fine-scale inversion may be carried out, if needed. This constitutes the outer iteration
in the overall algorithm. The fine-scale inversion is carried out only if the data misfit is deemed to be
unsatisfactory.
We demonstrate our approach using both synthetic and field examples. The field example involves waterflood
history matching of a structurally complex and faulted offshore turbiditic oil reservoir. Permeability and fault
transmissibilities are the main uncertainties. The geologic model consists of more than 800,000 cells and
10 years of production data from 8 producing wells. Using our dual scale approach, we are able to obtain a
satisfactory history match with a finite-difference model in less than a day in a PC. Compared to a manual
historymatching, the dual scale approach is shown to better preserve the geological features and the pay/non-
pay juxtapositions in the original geologic model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Geologic models now routinely consist of several hundred
thousands to millions of grid cells. Reconciling such high-resolution
geological models derived from static data to the field production
history is critical for reliable reservoir performance forecasting.
Several methods have been proposed in the literature for this purpose.
These include gradient-based methods (Brun et al., 2004), stochastic
approaches such as simulated annealing and genetic algorithms
(Quenes et al., 1994) and more recently the Ensemble Kalman Filter
(Devegowda et al., 2007). The integration of production data typically

requires the solution of an inverse problem. It is well known that such
inverse problems are typically ill-posed and can result in non-unique
and unstable solutions. A common approach to at least partially
alleviate the problem is through incorporation of prior information or
regularization such as ‘norm’ or ‘roughness’ constraints. However,
there are additional outstanding challenges that have deterred the
routine integration of production data into reservoir models using
inverse modeling. First, the computational cost is still extremely high,
particularly when the number of parameters is very large. Second, the
relationship between the production response and reservoir proper-
ties can be highly non-linear. This often causes the solution to
converge to a local minimum with an inadequate match to the data.
Furthermore, the solution itself can be unstable, leading to a loss in
geologic realism.
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One approach to address the ill-posed nature of the inverse problem
and the difficulties with the existence of local minima is through
decomposing the inverse problem by scale. The scale-decomposition
approach to inversion offers a number of advantages. First, computa-
tional efficiency is significantly enhanced compared to direct fine-scale
inversion of production data because typical fine-scale models can
consist of several hundred thousands tomillions of parameters. Second,
we can avoid over-parameterization and the subjectivity arising from
introduction of artificial regularization terms as discussed before.
Finally, the iterative minimization is much more effective because at
larger scales there are fewer local minima and those tend to be farther
apart. Thus, the solution is more likely to reach the global minimum or
at least a local minimum that is in the close vicinity of the global
solution. The coarse-scale solution can then be recursively refined by
using it as the initial solution for the fine-scale.

Yoon et al. (2001) proposed a multiscale history matching method
that startswith the largest scale and successively progresses to smaller
scale. This approach explicitly accounts for the resolution of the
production data by refining the parameterization only up to a level
sufficient to match the data. However, the refinement was carried out
uniformly throughout the domain without consideration of the
available data. The approach was subsequently modified by Grimstad
et al. (2004) through introduction of an adaptive multiscale inversion
whereby the parameterization is introduced via local refinement
rather than global refinement. Furthermore, the new degrees of
freedom are introduced only in places where it is warranted by the
data. Both of these methods rely on recursive refinement based on
the production data. No consideration of the prior model or static
information is taken into account during reparameterization. As a
result these methods pose challenges in preserving prior geologic
information which is typically incorporated using post-processing of
the solution to the inverse problem.

In this paperwepropose an approach to historymatching that relies
on sequential coarsening rather than sequential refinement. Starting
with the fine-scale geologic model, first an ‘optimal coarsening’ of the
model is carriedout. The coarsening is designed topreserve the features
of the geologic model to the maximum possible extent. It follows the
approach proposed by King et al. (2005) and combines cells in the fine-
scale model in such a manner that the variation of a ‘properly defined’
heterogeneity measure is minimized within the coarsened cells and
maximized between the coarsened cells. A well defined statistical
measure is used to determine the optimal level of coarsening. The
history matching and model updating is carried out primarily at the
coarse-scale and the updates are then mapped onto the fine-scale.
When production data misfit is sufficiently reduced, an outer iteration
allows for direct updating of the fine-scale model to further improve
convergence, if necessary.

One important distinguishing feature of our approach is that the
coarsening is primarily driven by the staticmodel and thus, themethod
naturally preserves the important characteristics of the initial geologic
model. Also, unlike the previous works, the coarsening is carried out in
the vertical directionwhile taking into accountproperty variations both
in the areal and vertical directions. Our approach preserves all the
advantages of the previously proposed multiscale methods in terms of
computational efficiency, stability and convergence of the solution. In
addition, because the parameterization is driven by the initial geologic
model rather than production data, the approach naturally preserves
geologic realism.

2. Approach

Multiscale approaches are getting increasing attention both for the
forward and inverse modeling applications of flow through porous
media. For history matching applications, the previous works on
multiscale methods (Yoon et al., 2001; Grimstad et al., 2004) mainly
focused on dynamic parameterization of the permeability distribution

based on the production data. More recently, Stenerud et al. (2008)
presented an adaptive multiscale approach for history matching using
streamline models. Their approach used a mixed multiscale finite
element forwardmodel to resolve the pressure and velocity variations
and streamline-based sensitivities for inverse modeling. In our
approach, we adopt many of the concepts from these previous
works. However, the major difference is that our approach relies on
a sequential coarsening of a fine-scale geologic model rather than a
sequential refinement of a coarse-scale model. Thus, our approach is
able to better preserve the geology embedded in the fine-scale model.
The main steps of our approach are outlined below.

(1) Optimal coarsening of the geologic model. The fine-scale geologic
model is sequentially coarsened until an ‘optimal’ level of
coarsening is achieved. We follow the approach of King et al.
(2005) to coarsen the geologicmodel by grouping layers in such
a way that the heterogeneity measure of an appropriately
defined ‘static’ property is minimized within the layers and
maximized between the layers. However, our approach differs
from that of King et al. (2005) in the choice of the static
parameter as discussed later. The optimal number of layers is
then selected based on an analysis resulting in the minimum
loss of heterogeneity because of the coarsening.

(2) Flow simulation and sensitivity computations. We use a finite-
difference or a streamline simulator for modeling multiphase
flow in the reservoir. If afinite-difference simulator is used, then
the cell fluxes are used to trace the streamlines and the time of
flight (Datta-Gupta and King, 2007). The streamline trajectories
and time of flight are then used to analytically compute the
sensitivity of the production datawith respect to permeabilities
(Oyerinde et al., 2007).

(3) Coarse-scale inversion.Historymatching is carried out primarily
at the coarse-scale. This constitutes our inner iteration in the
overall inversion scheme. The coarse-scale permeabilities are
updated via inversemodelingwhich proceeds in two steps: (i) a
generalized travel time inversion that matches the production
response based on an optimal travel time shift (Cheng et al.,
2005), followed by (ii) an amplitude matching that further
refines the match (Vasco et al., 1999). The coarse-scale
inversion proceeds much faster compared to a direct fine-
scale inversion because of the significantly reduced parameter
space. Furthermore, the iterative minimization is much more
effective because at the larger scales there are fewer local
minima and those tend to be farther apart. (Bunks et al., 1995)
The inversion is terminated when no further improvement in
data misfit is observed. The permeability updates are then
transferred to the fine-scale model. Because our ‘optimal’
coarsening method groups fine-scale cells with similar attri-
butes, the coarse-scale updates are simply added back to the
corresponding fine-scale cells.

(4) Fine-scale inversion. At the end of the coarse-scale inversion, a
fine-scale inversion may be carried out, if needed. This
constitutes the outer iteration in the overall algorithm. The
fine-scale inversion is carried out only if the data misfit is
deemed to be unsatisfactory.

Fig. 1 shows overall workflow of the dual scale inversion. It is
comprised of two major loops. The inner loop consists of a coarse-
scale inversion and majority of the data misfit reduction is accom-
plished at this stage. The coarse-scale inversion can be carried out very
efficiently because of the reduced parameterization. The optimal
design of the coarse-scale preserves most of the initial heterogeneity
and important geologic continuity. Since the coarse-scale inversion
has fewer tendencies to converge to a local minimum, it is more stable
compared to the direct fine-scale inversion (Bunks et al., 1995), and
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