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In this work, we analyze the spontaneous wicking process of a fluid in a homogeneous porous medium taking
into account that the medium is subject to the presence of a temperature gradient, including the gravity
effects. We assume that the porous medium is found initially at temperature T0 and pressure P0; suddenly
the lower part of the porous medium touches a liquid reservoir with temperature T1 and pressure P0 and
begins the spontaneous wicking process into the porous medium. The physical influence of two
nondimensional parameters such as the ratio of the characteristic thermal time to the characteristic wicking
time, β and α defined as the ratio of the hydrostatic head of the imbibed fluid to the characteristic pressure
difference between the wicking front and the dry zone of the porous medium, serves us to evaluate the
position and velocity of the wicking front as well as the temperature profiles and the corresponding Nusselt
numbers in the wetting zone. In particular, for small values of time we recover the well-known Washburn
law. The numerical predictions show that the wicking and the temperature profiles depend on the above
nondimensional parameters, revealing a clear deviation of the simple Washburn law.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Transport processes through porous media play an important role
in diverse applications, such as in geothermal operations, oil
exploration, thermal insulation, design of solid-matrix heat exchan-
gers, chemical catalytic reactors, and many others. The study of
convective heat transfer and fluid flow in porous media has received
great attention in recent years. Most of the earlier studies (Cheng and
Minkowycz, 1977; Minkowycz and Cheng, 1987; Badr and Pop, 1988;
Nakayama and Koyama, 1995; Sánchez et al., 2004) are based on
Darcy's law neglecting the gravity effect, which states that the
volume-averaged velocity is proportional to the pressure gradient.
In order to model a more realistic situation it is necessary to include
the gravity effects in the analysis of the heat convection in a porous
medium. In general, we can identify the wicking as a spontaneous
process for which a wetting viscous fluid displaces or pushes aside a
less no-wetting viscous one. Sometimes, this action can only be
sustained by capillary forces, without external pressure. In this last
case, we treat spontaneous wicking. In the above discussion, we
accept obviously that both fluids are immiscible. Therefore, in this
class of theoretical and experimental studies the front of displacement
of the interface is not known in advance and should be estimated as
part of the problem. From the pioneer work of Washburn (1921) to

predict the well-known displacement law, h~ t½, nowadays the
specialized literature has been extended widely in order to take into
account the influence of different factors. Recently, Alava et al. (2004)
presented the state of the art in disordered media, emphasizing those
aspects that have a strong influence on the interfacial description,
following a statistical physics approach. Taking into account the
random characteristics of disordered porousmedia, Alava et al. (2004)
discussed the main features of wicking: rough interfaces between
both phases, fluctuations of the fluid flow, quenched noise and
nonlocal effects originated from a random environment and capillary
forces. Therefore, there are many possible deviations from the simple
Lucas–Washburn description and these new fundamental studies
serve to understand better a great variety of technological applica-
tions. Nevertheless, there is another class of wicking processes, which
under different physical conditions are only regulated by transport
phenomena. Recognizing that the literature is scarce in this direction,
Alava et al. (2004) suggested that additional efforts are required to
understand simultaneously the wicking and transport effects.

Since the practical applications related to the analysis of
simultaneous wicking-transport processes are very vast, here we
have focused on the theoretical study of the heat transfer and wicking
in a Darcian porous medium, including the gravity effect. In spite of
the practical importance of this class of processes, few works have
appeared in the past to understand such combined effects. Phillips
(1991) noted that the presence of approximately uniform geothermal
gradients in natural reservoirs can seriously affect the prediction of
fluid dynamics. In fact, the work of Babadagli (1996, 2002) explores
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the influence of a temperature field on a reservoir of oil, showing that
oil production by wicking can be controlled with the aid of a heat
transfer process, injecting hot vapors. Under this situation, tempera-
ture gradients in the wetting and no-wetting phases during the
wicking process are presented.

In an effort to understand the influence of wicking on the above heat
transfer process, in the present work we deal theoretically the non-
isothermal wicking of a liquid-saturated layer into a dry zone. The
resulting governing equations are solved numerically with a conven-
tional finite-difference scheme. The theoretical analysis is basically
organized as follows: we present a motion equation to describe the
temporal evolution of thewicking front. In contrast with other theories,
the above equation is coupled to the energy equation for the wetting
phase. The above formulation includes as a particular case, the well-
known Lucas–Washburn law (Washburn, 1921), valid for isothermal
wicking. For simplicity, we assume onedimensional flow. Afterward,we
derive with the aid of an order of magnitude analysis the nondimen-
sional governing equations together with the corresponding initial and
boundary conditions. After some transformations, the governing
equations are reduced to one equation which has been numerically
solved by using the Crank–Nicolson numerical scheme. Inparticular, the
numerical solutions show that the transient response of the wicking
front is sensibly controlled by the parameter β.

2. Order of magnitude analysis and theoretical model

The physical model under study is shown in Fig. 1. A slender piece
or sheet that consists of an air-saturated porous medium (with
porosity ϕ) is found initially at temperature and pressure T0 and P0,
respectively. We assume thermal equilibrium between the saturated
air and the porous matrix. Suddenly, the lower part of the sheet
touches a liquid reservoir at temperature T1 and the same pressure P0,
causing a non-isothermal wicking process of the liquid into the porous
medium. In addition, the wicking front h=h(t) is characterized by a
uniform capillary pressure, Pc. The origin of coordinates is located at
the base of the sheet. We adopt one dimensional formulation;
therefore, is enough to introduce a longitudinal or vertical coordinate
y, which is measured upward in the direction of the wicking front.

The competition between thermal and dynamics penetrations
generates a non-isothermal capillary flow, which is developed inside
the porous medium. After an elapsed time t, the non-isothermal
wicking front reaches an average distance, h(t). Here, the meaning of

an average distance h(t) is to accept that the microscopic effects are
neglected, in a first approximation (Alava et al., 2004). Therefore, the
thermal and wicking effects introduce two times scales: the thermal
penetration scale, tth, and the wicking scale, tw. An order of magnitude
analysis permits to identify both scales. Thus, from the energy
equation for the porous medium given by (Vafai, 2005):
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where (ρc)e represent the effective heat capacity of the liquid-porous
matrix system and is defined as(ρc)e=ϕ(ρc)f+(1−ϕ)(ρc)s. ρf(s) and
cf(s) are the density and specific heat of the wetting liquid (or porous
medium). Here, the subscripts f and s represent wetting and porous-
matrix conditions. UD is the Darcy velocity of the fluid in the porous
medium and ke is the effective thermal conductivity. We assume that
the wicking front temperature is found at thermal equilibrium with
the dry zone.

An energy balance between the transported thermal energy by the
motion of the liquid and the accumulation energy term dictates that,

ρcð Þf T1 − T0ð ÞUCD
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where UCD, hth and tthconv
represent the characteristic Darcy volume-

average velocity associated with the velocity of the wicking front, the
characteristic thermal height and the characteristic convective time
scale, respectively.

From Eq. (2), the characteristic convective time scale is given as,

tthconv
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In a similar way, from Eq. (1), a dominant balance between
diffusive and accumulation terms, dictates that,
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using the above relationship, the characteristic diffusive time scale is
given by,

tthdiff
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In order to obtain the order of magnitude of the characteristic
thermal height, we compare the diffusive and convective terms of the
energy equation,
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Obtaining that

hthf
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The wicking volume-average velocity UCD is easily derived from
the driven capillary pressure gradient,

UCDf
K P0 − Pcð Þ

μhw
; ð8Þ

where K, μ and hw are the permeability of the porous medium, the
liquid viscosity and the equilibrium height of the wicking front,
respectively. This last characteristic length hw is the equilibrium

Fig. 1. Schematic view of the physical model during the non-isothermal wicking process
in a porous medium.
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