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a b s t r a c t

Counter-current spontaneous imbibition (COUCSI) is an important mechanism of recovery from tight
matrix blocks in naturally fractured reservoirs. In this study, by means of numerical simulation experi-
ments we show that significant differences in terms of the final recovery and imbibition rate exist
between COUCSI with and without the gravity forces. A specific situation where gravity forces are resist-
ing the process is considered. For COUCSI in presence of these forces, literature on the scaling of recovery
is limited. To present appropriate scaling equations, two approaches have been examined on the main
governing equation; (1) inspectional analysis and (2) applying an approximate analytical solution. The
scaling equations based on the latter approach give better results than those derived from the inspec-
tional analysis and scaling equations in the literature, as well. The new scaling equations accounting
for the resistive gravity forces and relative permeability and capillary pressure properties are presented,
which are consistent with the common scaling situations, as well.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

In naturally fractured reservoirs imbibition process, i.e., displac-
ing the nonwetting phase (either oil or gas) by wetting phase, is an
important mechanism for oil and gas recovery from tight matrix
blocks during many processes. In this work, a specific form of the
counter-current spontaneous imbibition (COUCSI) where capillary
forces are the only driving forces and gravity forces are resisting
the displacement is considered. For further information on the
details of different situations that may occur, the readers are
referred to Iffly et al. (1972), Schechter et al. (1994), Pooladi-
Darvish and Firoozabadi (2000), Qasem et al. (2008), Bourbiaux
(2009) and Mirzaei-Paiaman et al. (2011b).

The COUCSI with negligible gravity effects has been widely
studied (Morrow and Mason, 2001; Mason and Morrow, 2013).
In this case the process can be divided into two periods. The early
time period, also called infinite acting, frontal flow, or pre-contact
period, occurs as if into a semi-infinite medium. This period occurs
before the imbibition front reaches the no-flow boundary (NFB).
During this period, which is responsible for most of the recovery,
the recovery varies linearly by square root of time as reported by
Handy (1960), Reis and Cil (1993), Chen et al. (1995), Cai et al.
(2010, 2012), Schmid and Geiger (2012, 2013), Mirzaei-Paiaman

and Masihi (2013, 2014) and Mirzaei-Paiaman et al. (2013). The
second period is the late time period (also called finite acting,
boundary dominated or post-contact period) and occurs if the
imbibition front arrives at the NFB. In this period the recovery is
an exponential function of time (Reis and Cil, 1993; Tavassoli
et al., 2005). Each of these flow periods can be identified from
recovery data by either plotting the imbibition rate versus time
on a log–log scale (Chen et al., 1995; Cil et al., 1998) or plotting
recovery versus square root of time. In the former, a straight line
can be drawn through the data points for each flow period
and the intersection point of the two straight lines reflects
approximately the time at which the imbibition front hits the
NFB. In the latter method a straight line can be fitted to the data
points only for infinite acting period. The point at which data
points start to deviate from the fitted straight line represents
approximately the beginning of the finite acting period.

For the COUCSI when gravity effects are absent numerous scal-
ing equations exist (Schmid and Geiger, 2012, 2013; Mirzaei-
Paiaman and Masihi, 2013). Recently, Schmid and Geiger (2012,
2013) and Mirzaei-Paiaman and Masihi (2013) presented universal
scaling equations for the infinite acting period of the COUCSI in the
absence of gravity forces. However, as will be presented later in
this work, the recovery performances with and without the gravity
forces are different. Therefore, implementation of the scaling equa-
tions developed specifically for the infinite acting period of the
zero gravity COUCSI to the whole process of the non-zero gravity
COUCSI should be done with caution.

http://dx.doi.org/10.1016/j.juogr.2015.09.001
2213-3976/� 2015 Elsevier Ltd. All rights reserved.

⇑ Tel.: +98 9168014851.
E-mail address: Mirzaei1986@gmail.com

Journal of Unconventional Oil and Gas Resources 12 (2015) 68–86

Contents lists available at ScienceDirect

Journal of Unconventional Oil and Gas Resources

journal homepage: www.elsevier .com/ locate / juogr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.juogr.2015.09.001&domain=pdf
http://dx.doi.org/10.1016/j.juogr.2015.09.001
mailto:Mirzaei1986@gmail.com
http://dx.doi.org/10.1016/j.juogr.2015.09.001
http://www.sciencedirect.com/science/journal/22133976
http://www.elsevier.com/locate/juogr


Since there is no known exact analytical solution to the main
governing equation in the presence of gravity forces, literature
works use either the inspectional analysis or different approximate
solutions (Xie and Morrow, 2000; Li and Horne, 2006; Standnes,
2010; Mirzaei-Paiaman et al., 2011a). Xie and Morrow (2000) pro-
posed semi-empirically a scaling equation in the presence of driv-
ing gravity forces. Li and Horne (2006) used an approximate
solution with the assumption of linear capillary pressure profile.
By Lambert’s W function, Standnes (2010) presented an equation
on the basis of the single capillary tube model. Mirzaei-Paiaman
et al. (2011a) utilized an approximate solution working with the
weak or integral form of the corresponding partial differential gov-
erning equations presented earlier by Tavassoli et al. (2005) to
develop a single scaling equation. The scaling equations given by
Xie and Morrow (2000) and Standnes (2010) do not include the rel-
ative permeability and capillary pressure effects and are limited to
the systems with the same wetting conditions. The scaling equa-
tion given by Standnes (2010) does not account for the gravity
forces. The scaling equations by Xie and Morrow (2000), Li and
Horne (2006), Standnes (2010) and Mirzaei-Paiaman et al.
(2011a) do not consider the consistency between the vertical and
horizontal axes in different scaling situations, as well, as high-
lighted by Mirzaei-Paiaman and Masihi (2013). Mirzaei-Paiaman
and Masihi (2013) noticed that during development of any scaling
equation consistency with common practices should be consid-
ered. A single scaling equation cannot be used in different scaling
practices, and each scaling practice requires its corresponding scal-
ing equation (Mirzaei-Paiaman and Masihi, 2013). The current
scaling equations in the presence of the gravity forces along with
the recently published exact scaling equations in the absence of
gravity forces by Mirzaei-Paiaman and Masihi (2013) for one
dimensional displacement are summarized in Table 1. Included
parameters will be explained later within the text.

In the scaling part of this study we first consider the inspec-
tional analysis of the main governing equation of the COUCSI in

the presence of gravity forces to investigate limitations of this
approach. Because of many simplifying assumptions and the nat-
ure of such method the scaling equation derived using this method
is not accurate in scaling of the recovery data. We then utilize an
approximate analytical solution to the problem (Tavassoli et al.,
2005; Mirzaei-Paiaman et al., 2011a) to find the appropriate scal-
ing equations. In the second approach, we consider the gravity
forces, relative permeability and capillary pressure properties. In
addition, the consistency between development of the new scaling
equations and common scaling practices, as emphasized by
Mirzaei-Paiaman and Masihi (2013) is considered. To investigate
scaling ability of different scaling equations, we use the recovery
data obtained from numerical simulation experiments. The reason
for using the numerical simulation technique is that simulation of
non-zero gravity cases in laboratory due to the need for the tall
matrix blocks is often not practical.

The remaining portion of this paper is structured as follows. In
Mathematical formulations Section we review the basic governing
equation and an approximate analytical solution to the COUCSI
process in the presence of resisting gravity effects (Tavassoli
et al., 2005; Mirzaei-Paiaman et al., 2011a), followed by a brief
introduction into the recently published universal scaling equa-
tions for the infinite acting period of the COUCSI in small size sys-
tems (Schmid and Geiger, 2012, 2013; Mirzaei-Paiaman and
Masihi, 2013). Then, in Results and discussion Section the numer-
ical solution to the main governing equation is presented and using
a set of numerical simulation experiments, the recovery perfor-
mance and existing flow periods/regimes in the subject systems
are investigated. Then the inspectional analysis of the main gov-
erning equation and an approximate analytical solution to the
problem is used to derive appropriate scaling equations. Finally,
using several diverse recovery data generated by numerical
simulation technique we check the ability of the different scaling
equations derived on the basis of the two aforementioned methods
and existing scaling equations in the literature.

Table 1
The current scaling equations in the presence of gravity forces. The recent universal scaling equations for the small size systems by Mirzaei-Paiaman and Masihi (2013) have also
been included.

Work Gravity
presence

Methodology Scaling equation Limitations

Xie and Morrow
(2000)

Yes Semi-empirical
tD;XM ¼ r

ffiffi
k
/

p
ffiffiffiffiffiffiffiffiffiffiffilwlnw

p
L2
þ DqgH

� �
t

� Does not include the relative
permeability and capillary pres-
sure effects

� Not consistent to the common
scaling situations

� No clear theoretical basis
Li and Horne

(2006)
Yes Approximate analytical solution to the main

governing equation (linear capillary pressure
profile)

tD;LH¼4aR2t � Not consistent to the common
scaling situations

Standnes (2010) Yes Single capillary tube model
tD;S ¼ 1þW � exp �1� r

ffiffiffi
k
2/

p
ffiffiffiffiffiffiffiffiffiffiffilwlnw

p
L2

� �
t

� �� � � Does not include the gravity
effects

� Does not include the relative
permeability and capillary pres-
sure effects

� Not consistent to the common
scaling situations

Mirzaei-
Paiaman et al.
(2011a)

Yes Approximate analytical solution to the main
governing equation (Tavassoli et al., 2005)

tD;MMS¼aR2t � Not consistent to the common
scaling situations

Mirzaei-
Paiaman and
Masihi
(2013)

No Exact analytical solution to the main governing
equation (Schmid et al., 2011; Schmid and Geiger,
2012, 2013)

tD;MP ¼ 2AF 0 ðSwiÞ
/Lc

t1=2

tD;MPVp ¼ 2A
/Lc

t1=2

tD;MPVi
¼ 2A

/Lc ð1�SwiÞ t
1=2

� Does not include the gravity
effects

This study Yes Approximate analytical solution to the main
governing equation (weak or integral form)

tD;new ¼ 1þWð�e�1�6aR2tÞ
tD;newVp ¼ ð1�Snwr�SwiÞ

R ½1þWð�e�1�6aR2 tÞ�
tD;newVi

¼ ð1�Snwr�Swi Þ
Rð1�SwiÞ ½1þWð�e�1�6aR2tÞ�

-
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