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a b s t r a c t

This paper builds an analytical model to describe the comprehensive buckling behavior of CT (coiled
tubing) with residual bending in a horizontal well. The new model is built on the basis of beam-column
theory and solved by the Galerkin method of weighted residuals. The initial configuration of CT with
residual bending are assumed to be in two typical trigonometric shapes, sine mode or cosine mode. By
using the new buckling equations, critical buckling force and radial contact force are calculated ac-
counting for the residual bending. Axial compressive displacement and maximum bending moment are
also calculated. The calculation results show that a CT with residual bending behaves more easily to
buckle than a straight CT, and the maximum contact force of CT with residual bending is larger than that
of straight CT. As for the two initial trigonometric shapes, the sinusoidal critical buckling force of these
two initial modes is almost the same, but CT with initial cosine mode tends to buckle easier than CT with
initial sine mode in helical buckling. To verify the proposed model, the results of this paper are compared
to Sali�es's experimental results, which support the proposed solutions. The comparison between buck-
ling solutions of CT with residual bending and CT without residual bending show that the effect of re-
sidual bending on CT cannot be ignored in buckling analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The buckling behavior of tubular has been studied for more than
half centuries. Lubinski (1950, Lubinski and Althouse, 1962) first
systematically analyzed the 2D lateral buckling and 3D helical
buckling of drill string in vertical wells, and derived the relationship
between the critical axial force and the pitch of helix with energy
method. Paslay and Bogy (1964) and Dawson and Paslay (1984)
derived the first, now well-known, expression (Eq. (1)) for the
critical sinusoidal buckling load of a tubular constrained in an in-
clined wellbore.
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Where Fcrs is the critical sinusoidal buckling load, q is the tubular
weight per unit length, a is the inclination angle of a wellbore, EI is
the bending stiffness, rc is the radial clearance between tubular and

a wellbore.
Mitchell (1988) established the buckling equation and the

contact force describing a pipe constrained in an inclined wellbore.
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Where q is the angular displacement, N is the normal contact force.
From then on many researchers found the same formula with

that derived by Paslay for critical sinusoidal buckling force. How-
ever, this sinusoidal buckling force is the critical point between the
initial straight configuration and sinusoidal configuration. This
means when the axial force is less than the critical sinusoidal
buckling force, CT will remain in straight configuration. As the axial
force increases further, Miska et al. (1996) noticed the phenomenon
that the sinusoidal configuration will change from a stable snaking
shape into an unstable snaking shape (transition shape), and
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eventually into a helical configuration. Finally he derived the crit-
ical force from stable snaking configuration to unstable snaking
configuration. Mitchell (1997) also pointed out the transition from
lateral buckling to helical buckling and had given the critical
transition force. As for the complete helical configuration, Chen
et al. (1990) presented a study for pipe buckling in horizontal
wells and derived an equation for the critical helical buckling force.
In the next few decades, Gao et al. (1998), Gao (2006), Gao and
Huang (2015), Liu (1999) and Huang et al. (2015) studied buckling
behaviors by using both the energy method and the tubular-
buckling equations. The values of critical buckling loads proposed
by the above researchers are given in Table 1.

However, these models typically assumed that the tubular was
initially straight in the wellbore. This assumption is suitable for
tubulars like dill pipe, tubing, casing and so on, but for coiled tubing
(CT). Actually every CT has minor initial bending. After a coiled
tubing string is manufactured, it is plastically bent around a reel
and then transported to every well site. During operations, the CT is
unspooled from the reel and bent on the gooseneck and then sent
into the injector. As the CT goes through the injector, the gripping
block will crush on CT to inject it into the wellbore. Throughout the
process (shown in Fig. 1), CT goes through four times bending-
straighten deformation, and every bending deformation makes
the CT into plastic state resulting in residual bending. After entering
into the wellbore, the CT is not straight but has an initial configu-
ration. This initial configuration is caused by residual bending.

As to our knowledge, only several studies considered the effect
of residual bending. Miska et al. (1996) observed the effect of re-
sidual bending on pipe in experiment. A pipe with residual bending
behaves more flexible than straight pipe and consequently less
efficient for axial force transfer. Qiu et al. (1997, 1999) established a
new model to analyze the effect of CT initial configuration on si-
nusoidal and helical buckling behavior in deviated and curvedwells
with the energy method. They assumed the initial configuration of
CT was sinusoidal and concluded that the initial configuration had
an essential effect on the axial force to produce a helical configu-
ration. Zheng and Adnan (2005) also noticed the questions of re-
sidual bending in CT, and he assumed that the initial configuration
of CTwas in the form of a helix. However, we think the initial helical
configuration may not correspond to actual situation.

In this paper, the initial configuration of CT is not just in one
configuration but in two typical trigonometric shapes: sinemode or
cosine mode. By using the beam-column method, new governing
differential equations are derived for predicting the sinusoidal and
helical buckling behaviors of CT with residual bending in a hori-
zontal well. The maximum bending moment, axial compressive
displacement and contact force between the CT and wellbore are
also calculated. When the initial configuration of CT is straight,
buckling solutions of the new equations are identical with previous
conventional results. Through these analyses, we can see the sig-
nificant effect of CT initial disturbance on the buckling behavior.
These new results allow for accurate job design to operate CT in the
wellbore.

2. CT buckling equation

2.1. Major assumption

In order to build the tubular analysis model, we take following
major assumptions:

1 The wellbore is a horizontal straight cylinder.
2 The CT is in continuous contact with the wellbore.
3 The slender-beam theory is used to relate bending moment to

curvature.
4 Friction force between the tubing and wellbore is neglected.
5 The initial amplitude of CT angular displacement is small.

2.2. Geometric description

The O-xyz coordinate is shown in Fig. 2. The origin of the Car-
tesian coordinates is set at the center of the cross section of the
wellbore at the leftmost end. The z axis points horizontally from left
to right along the axis of the wellbore. The x axis points vertically
downward, and the y axis is perpendicular to the x-z plane.

Fig. 3 illustrates the initial configuration of a CT with residual
bending that is subjected to no axial load from top view and front
view. It is assumed that inside the wellbore, the CT lies on the lower
side of the wellbore as a result of gravity. The initial position of a
point on the axis of the CT is denoted by C0(x0, y0, z0), where x0, y0
are the initial lateral displacements of CT with residual bending, as
shown in Fig. 3.

x0 ¼ rc cos q0 (2)

y0 ¼ rc sin q0 (3)

Where q0 is the initial angular displacement, and rc is the radial
clearance between CT and the wellbore.

Now an axial compressive load is applied on the left end of the
tubing. As shown in Figs. 4 and 5, the point originally located at
C0(x0, y0, z0) will move to C(x, y, z).

x ¼ rc cos q (4)

y ¼ rc sin q (5)

Where x, y are the final lateral displacements, and q is the final
angular displacement.

2.3. Equilibrium equations

The tubular-buckling equation and the wellbore contact force
considering the initial configuration in a horizontal well are as
follows. The process of building the buckling equation is shown in
Appendix A.
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Table 1
The values (F=Fcrs) of critical buckling loads for different buckling models.

Researchers Straight Sinusoid Transition Helix

Chen et al (1990) [0, 1] [1,
ffiffiffi
2

p
] / [
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p
, ∞]

Miska et al. (1996) [0, 1] [1, 1.875] [1.875, 2
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p
] [2
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p
, ∞]

Mitchell (1997) [0, 1] [1,
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] [
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p
, 2
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p
] [2
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Gao et al. (1998) [0, 1] [1, 1.401] / [1.401, ∞]
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