Journal of Natural Gas Science and Engineering 30 (2016) 338—342

Journal of Natural Gas Science and Engineering

journal homepage: www.elsevier.com/locate/jngse

Contents lists available at ScienceDirect

Nofdgal Gos

Unit commitment for a compressor station by mixed integer linear

programming

@ CrossMark

Lili Zuo, Xiaorui Zhang, Changchun Wu', Yang Yu

National Engineering Laboratory for Pipeline Safety / Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum

(Beijing), Changping, Beijing, China

ARTICLE INFO

Article history:

Received 24 December 2015
Received in revised form

19 February 2016

Accepted 22 February 2016
Available online 27 February 2016

Keywords:

Compressor

Unit commitment

Mixed integer linear programming
CPLEX

Dynamic programming

ABSTRACT

When operating a compressor station, given its mass flow rate, inlet pressure and temperature, and
discharge pressure, dispatchers need to decide which compressors to run and at what flow rates, i.e., the
operating scheme of the station, to cut its energy costs. This paper addresses this problem under un-
steady states. This means that at least one of the four given operating parameters is time-dependent, and
therefore so is the operating scheme. The key constraints of the problem are the minimum uptime and
downtime of each compressor, which interconnect the operating schemes at each time step and
complicate the problem. The energy cost of a compressor unit is almost a linear function of its flow rate
for a given inlet pressure, inlet temperature, and discharge pressure. Therefore, the optimization problem
was formulated as a mixed integer linear programming (MILP) model, which was solved by CPLEX. The
optimal operating schemes given by CPLEX were simulated to reevaluate the objective function, and the
error of the linearized energy cost model was shown to be within 5%. The recalculated objective function
values were 0.22%—1.18% higher than those of the true optimum. However, the MILP method was 0.49

—64.95 times faster than the dynamic programming approach yielding global optimal solutions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Pipelines are widely used to transport natural gas over long
distances around the world. As gas flows through a pipe segment,
its pressure drops. Compressor stations located along a gas pipeline
compensate for this pressure drop by consuming large amounts of
energy to compress the gas. Their energy costs make up the ma-
jority of gas pipeline operating costs. Hence, power optimization of
compressor stations has attracted great interest.

In most cases, a compressor station consists of several com-
pressors in parallel. Knowing the mass flow rate, the inlet pressure
and temperature, and the discharge pressure of a compressor sta-
tion, dispatchers need to decide which units to run and at what
flow rates, i.e., the station operating scheme, to minimize station
energy cost. Some constraints on compressor operation in parallel
must also be satisfied.

The steady-state version of this problem has attracted wide
interest (Botros et al., 2011; Carter, 1996; Jenicek and Kralik, 1995;
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Wright et al,, 1998). Under steady state, the parameters and the
operating scheme of a compressor station are not affected by time.
Several efficient steady-state solution methods are available,
including gradient-based algorithms (Paparella et al., 2013; Xenos
et al, 2014, 2015), mixed integer linear programming (Carter,
1996), simulated annealing algorithms (Wright et al., 1998), ge-
netic algorithms (Hawryluk et al., 2010; Mahmoudimehr and
Sanaye, 2014), and dynamic programming (Zhang et al., 2014).
However the unsteady-state version of this problem has
attracted little interest. This kind of problem originates from opti-
mizing gas pipeline operation under unsteady states. The problem
has two levels: a pipeline level and a station level. The pipeline level
adjusts the discharge pressure of each compressor station and
simulates gas flow in pipe segments. Given the mass flow rate, the
inlet pressure and temperature, and the discharge pressure of a
compressor station, the station level determines the operating
scheme that will minimize overall station energy consumption.
Note that the four given operating parameters are likely to be time-
dependent, and hence the operating scheme will be time-
dependent also. This means that in addition to the constraints
mentioned earlier for the steady-state problem, the minimum
uptime and downtime of each compressor unit must also be
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considered. Once a compressor has been started up, its minimum
uptime requires that it must run at least for a prescribed period of
time before it is shut down. The minimum downtime of a
compressor has a similar meaning. These extra constraints inter-
connect the station operating schemes at each time step, compli-
cating the problem.

This problem is similar to the unit commitment (UC) problem in
the power generation industry. For clarity, the latter will be referred
to here as the generator UC problem and the former as the
compressor UC problem. The generator UC problem has attracted
great interest (Padhy, 2004; Sen and Kothari, 1998; Yamin, 2004),
and the methods used to solve it include priority lists, dynamic
programming, mixed integer linear programming (Carrion and
Arroyo, 2006; Garver, 1962; Jabr, 2012), and genetic algorithms
(Dang and Li, 2007; Kazarlis et al., 1996; Pavez-Lazo and Soto-
Cartes, 2011; Sun et al., 2006; Yang et al., 1996). The generator UC
problem is usually solved as a separate problem. However, the
compressor UC problem is a sub-problem that must be solved
hundreds to thousands of times to optimize gas pipeline operation.
Hence, the method used to solve the compressor UC problem
should be efficient.

The following sections describe the formulation of a mixed
integer nonlinear programming (MINLP) model to describe the
compressor UC problem. This model was then approximated by a
mixed integer linear programming (MILP) model, which was solved
by CPLEX. This approach was tested on three compressor stations.
Analysis of the results included approximation error analysis of the
MILP model and a comparison between the approximate optimal
solutions and the true optimal ones.

2. Mathematical model

The aim of a compressor UC problem is to minimize the accu-
mulated energy cost of a compressor station during a period of
time, illustrated as Eq. (1), where T is the period of time, N the
number of compressors in the station, Q the mass flow rate passing
through a compressor in the station, P, and Tj, the inlet pressure
and temperature of the station respectively, Py the discharge
pressure of the station, and f the energy cost of a compressor unit.
Note that for a specific compressor UC problem, Pj,, T, and P4 are
given. Hence, Eq. (1) can be simplified to Eq. (2), and the latter is
computed according to the trapezoid rule, illustrated as Eq. (3),
where 47 is the time step and Ty, the number of time steps. Note
also that the energy cost of a compressor unit is usually computed
by simulation (Zhang et al., 2014).
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The problem is subject to two classes of constraints corre-
sponding to the station as a whole and to each unit in the station.
The first class expresses the flow rate balance of the station, illus-
trated as Eq. (4), where Q is the total mass flow rate of the station.
The second class includes Eqgs. (5)—(8). Eq. (5) defines the feasible
flow rate region of a compressor, where Qmin and Qmgx are its

smallest and largest flow rate under specific conditions Pjy, Tin, and
P4, and u represents the compressor state. If the compressor is on,
u = 1; otherwise u = 0. Egs. (6) and (7) describe the minimum
uptime and minimum downtime constraints of a compressor
(Moritz, 2007). In the two equations, L is the minimum uptime of
the compressor and [ its minimum downtime. By introducing an
extra kind of variable v;, Rajan and Takriti (2005) have shown that
Eqgs. (9)—(12) describes the convex hull defined by Egs. (6)—(8). In
these equations, v; represents whether a compressor is started up
at time step t. It is equal to 1 if and only if the compressor is offline
at time step t-1 and is online at time step t. Finally, Egs. (13) and (14)
are the initial conditions. It is assumed that the compressors have
been online or offline for enough time. Hence, in the first time step,
each of them can be started up or shut down.
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Egs. (4) and (5) and Eqgs. (9)—(14) describe the compressor UC
problem. Compared with the generator UC problem, it is less con-
strained and involves fewer units. However, its objective function is
usually computed by simulation, as stated above, whereas that of
the generator UC problem is quadratic. This makes the current
problem as hard as the generator UC problem.

3. MILP approach

Note that only the objective function in the previous model is
nonlinear, and many powerful MILP solvers are available. Therefore,
the objective function was approximated by linear functions, and
the previous MINLP model was reformulated as an MILP model. As
illustrated in Eq. (3), the objective function is related to the energy
cost of a compressor unit at a given time step. Given the inlet
pressure, the inlet temperature, and the discharge pressure of a
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