
The application of static load balancers in parallel compositional
reservoir simulation on distributed memory system

Xuyang Guo a, *, Yuhe Wang b, John Killough a

a Harold Vance Department of Petroleum Engineering, Texas A&M University, 3116 TAMU, College Station, TX 77843-3116, USA
b Petroleum Engineering Program, Texas A&M Engineering Building, Education City, PO Box 23874, Doha, Qatar

a r t i c l e i n f o

Article history:
Received 5 September 2015
Received in revised form
13 November 2015
Accepted 17 December 2015
Available online 20 December 2015

Keywords:
Compositional reservoir simulation
High performance computing
Load balance
Graph partitioning
Distributed memory system

a b s t r a c t

Compositional reservoir simulation depicts the complex behaviors of all the components in gaseous,
liquid, and oil phases. It helps to understand the dynamic changes in reservoirs. Parallel computing is
implemented to speed up simulation in large scale fields. However, there is still many challenges in
obtaining efficient and cost-effective parallel reservoir simulation. Load imbalance on processors in the
parallel machine is a major problem and it severely affects the performance of parallel implementation in
compositional reservoir simulators. This article presents a new approach to the reduction of load
imbalance among processors in large scale parallel compositional reservoir simulation. The approach is
based on graph partitioning techniques: Metis partitioning and spectral partitioning. These techniques
treat the simulation grid, or the mesh, as a graph constituted by vertices and edges, and then partition
the graph into smaller domains. Metis and spectral partitioning techniques are advantageous because
they take into account the potential computational load of each grid block in the mesh and generate
smaller partitions for heavy computational load areas and larger partitions for light computational load
areas. In our case, the computational load is represented by transmissibility. After new partitions are
generated, each of them is assigned to a processor in the parallel machine and new parallel reservoir
simulation can be conducted. Traditionally, the intuitive 2D decomposition is frequently used to partition
the simulation grid into small rectangles, and this is a major source of load imbalance. The performance
of parallel compositional simulation based on our partitioning techniques is compared with the most
commonly used 2D decomposition and it is found that load imbalance in our new simulations is reduced
when compared with the traditional 2D decomposition. This study improves the efficiency of compo-
sitional simulation and eventually makes it more cost-effective for hydrocarbon simulation on mega-
scale reservoir models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The application of parallel computing in oil industry has been
studied for many years. Lu et al. (2008) introduced a parallel
reservoir simulator that can be run on multi-core personal com-
puters. The study showed that normal multi-core computers have
the ability of improving simulation efficiency and their parallel
implementation does not need large scale parallel machines.
Reinders (2012) introduced some processors that can be used to
facilitate parallel computing and provided an overview of

programming with these processors. Killough and Wheeler (1987)
presented the usage of parallel iterative methods to solve linear
equations. They proposed a domain decomposition algorithm as
preconditioner in parallel simulations and it was proved that their
method largely improves computational efficiency. Many efforts
have also been put into the understanding of load imbalance. Wang
and Killough (2014) managed to mitigate load imbalance by over-
decomposing the mesh of a reservoir model. In their study, the
mesh was divided into small partitions and the number of the
partitions is way larger than the number of available cores in the
processors of the parallel machine. By assigning multiple partitions
into one core and by introducing a dynamic load balancer, they
doubled the speedup and largely reduced load imbalance. Sarje
et al. (2015) also reached optimized parallel simulation perfor-
mance on an unstructured mesh by addressing load imbalance

* Corresponding author.
E-mail addresses: xuyang01@tamu.edu (X. Guo), yuhe.wang@qatar.tamu.edu

(Y. Wang), jkillough@tamu.edu (J. Killough).

Contents lists available at ScienceDirect

Journal of Natural Gas Science and Engineering

journal homepage: www.elsevier .com/locate/ jngse

http://dx.doi.org/10.1016/j.jngse.2015.12.030
1875-5100/© 2015 Elsevier B.V. All rights reserved.

Journal of Natural Gas Science and Engineering 28 (2016) 447e460

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:xuyang01@tamu.edu
mailto:yuhe.wang@qatar.tamu.edu
mailto:jkillough@tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jngse.2015.12.030&domain=pdf
www.sciencedirect.com/science/journal/18755100
http://www.elsevier.com/locate/jngse
http://dx.doi.org/10.1016/j.jngse.2015.12.030
http://dx.doi.org/10.1016/j.jngse.2015.12.030
http://dx.doi.org/10.1016/j.jngse.2015.12.030


issues. They developed a new way of partitioning the unstructured
mesh and it reduces communication between different partitions.
Tallent et al. (2010) introduced a method of identifying load
imbalance. Although it does not address the issue, it identifies the
cores that have the most severe load imbalance. Thus, modifica-
tions can be made to the segments that cause load imbalance so as
to reduce the imbalance.

Although many efforts have been put into the study of load
balance in parallel reservoir simulation, few entertained the pos-
sibility of using graph partition as a way of balancing loads. This
study was undertaken to incorporate graph partitioning techniques
to parallel compositional simulation. Several graph partitioning
techniques honoring both reservoir geometry and geological fea-
tures were used as static load balancers. Their load balancing
quality and the resulting parallel load balance performance were
examined to evaluate the effectiveness of the implementation.
Besides, static partition quality was correlated with load balance
from real simulation runs so that one can understand whether a
certain graph partitioning technique is capable of relieving load
imbalance.

2. Background

Load balancer is widely used in implementation of parallel
computing. Generally speaking, it divides the work into small parts
so that each of them can be assigned to a core in the parallel ma-
chine. There are a variety of load balancers and the choice of load
balancer can largely affect the performance of parallel computing
implementation. It is ideal if each core is assigned exactly same
amount of work load. However, in real applications, after the entire
work is divided by load balancers, it is not always easy to evaluate
each part's work load. In addition, as the computation proceeds, the
work load on a certain part may change tremendously. Another
consideration about load balancer is the difficulty of implementa-
tion in a parallel system. All of these facts make it hard to choose
the best load balancer that help optimize parallel performance.

Popular load balancers consist of static and dynamic balancer.
Static load balancer divides the entire work and distributes them to
processors before any actual simulation is started while dynamic
load balancer divides the work during the simulation process and it
is based on the feedback of each processor's real time load distri-
bution. Intuitively, dynamic load balancer is probably the better
choice. However, in many cases, it is hard for this method to be
implemented. Also, due to its feature of ongoing re-partitioning of
the root mesh, the way and the amount of data that need to be
exchanged between processors keep changing. This may signifi-
cantly increase the overheads of the parallel system and largely
decrease the overall parallel computing performance. As a result,
the benefits of dynamic load balancer can be undermined by its
own complexity and overheads. Zhang et al. (1997) compared the
performance of static load balancers and dynamic load balancers
for a parallel implementation on a heterogeneous system. They
found out that, unlike common perception, the quality of parallel
implementation based on static load balancers is nearly as good as
the one based on dynamic load balancers on small to moderate
scale systems. When it comes to large scale systems, static load
balancers sometimes even perform better than dynamic load bal-
ancers. They identified that the performance of dynamic load bal-
ancer is heavily weakened by system overheads. In our study, static
load balancer was used based on the following reasons:

1. Static load balancer takes into account physical properties of the
reservoir model and can generate partitions based on them.

2. Unlike dynamic load balancer, static load balancer will not
introduce huge overheads.

3. Static load balancer is not hard to be implemented into the
Message Passing Interface based compositional simulator.

4. The combination of static load balancer and the simulator is able
to deal with a variety of reservoir models. If new dataset and
geological information are given, static load balancer can easily
distribute the entire workload into small parts based on new
information.

Graph partition is one way of static load balancing. In order to
process the reservoir grid with graph partitioners, the grid is
treated as graph. The grid blocks in the mesh are equivalent of
vertices in a graph and the connections (faces) between grid blocks
are equivalent of edges in a graph. The following form is used to
represent a graph G:

G ¼ ðV ; EÞ

here V is vertices and E is edges. A graph can be described solely
based on vertices and edges data. In a realistic case (e.g. a reservoir),
each vertex (grid block) has properties such as transmissibility and
porosity. Such properties can be used as weights so that they are
honored in the partitioning process. Thus, three kinds of informa-
tion are associated with each vertex: vertex location, other vertices
that connect to this vertex, and the weight of the vertex.

Metis and spectral methods are the specific graph partitioning
techniques that we selected in this article. Both methods require
similar inputs from the root graph.

2.1. Metis

Metis is an open access software package developed by Uni-
versity of Minneapolis and it is capable of partitioning unstructured
graphs. It can be installed on UNIX system and it provides both
standalone software package and library. Vertex location, neigh-
boring vertices, and vertex weights are the inputs to the package.
Also, Metis needs the desired number of partitions as input. The
partitioner generates new partitions so that the sum of vertex
weights in each partition is the same. Besides, the edge cuts, which
stand for communication between different partitions, are mini-
mized (Karypis, 2013).

Based on our experiences, Metis partitions a graph with 10,000
vertices in a few seconds and partitions a graph with one million
vertices in less than 3 min. This is fast enough for our needs and it
largely saves the pre-processing time. Instead of recursive bisec-
tion, Metis uses a k-way partitioning which partitions the root
graph into k pieces simultaneously. According to Karypis and
Kumar (1998), for a graph G ¼ (V,E), Metis algorithm partitions it
in O(jEj) time and this is faster than the conventional recursive
bisection by a factor of O(log k) where k is the target number of
partitions. They pointed out that there are three steps for Metis to
partition a graph: coarsening, initial partitioning, and
uncoarsening.

In the coarsening step, the original graph G0 ¼ (V0,E0) is coars-
ened by n times. Vertices of the original graph are distributed into
groups of vertices and each group becomes a new vertex in the
coarser graph. This coarsening process maintains the connectivity
of the initial graph and preserves it in the coarser version of graph.
After n times of coarsening, the original graph becomes Gn ¼ (Vn,En)
and Vn is much smaller than V0. The connectivity and weights of the
original (finest) graph G0 are largely preserved and transmitted to
the coarsest graph Gn. The coarsest graph is small in size and
complexity. The partitioning is conducted at this level so that the
partitioning process is fast.

In the initial partitioning process, Metis partitions the coarsest
graph Gn into the target number of k parts: P1, P2,…, and Pk. The

X. Guo et al. / Journal of Natural Gas Science and Engineering 28 (2016) 447e460448



Download English Version:

https://daneshyari.com/en/article/1757304

Download Persian Version:

https://daneshyari.com/article/1757304

Daneshyari.com

https://daneshyari.com/en/article/1757304
https://daneshyari.com/article/1757304
https://daneshyari.com

