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a b s t r a c t

A modified form of Coordinate Descent methodology (MCD) is presented for solving process optimiza-
tion problems. The modifications made to the conventional coordinate descent algorithm include search
initialization inspired by a pattern search, sequential coordinate randomization for exploring search
space and box search for refining of local optimum. The performance of the proposed MCD methodology
was examined on benchmark mathematical test problems. After successful convergence of the test
problems in reasonable time the MCD algorithm was exploited for the optimization of Natural gas (NG)
liquefaction process plant developed in a commercial simulator. The newly developed Korea Single
Mixed Refrigerant (KSMR) process was optimized for compression energy demand which is a strong
function of refrigerant composition and its operating pressures. MCD was successful in finding the op-
timum refrigerant composition and operating pressures levels that results in energy savings of 40% and
11% compared with the representative base cases. The suitability of MCD algorithm for NG process plant
was further demonstrated by comparing the results of KSMR process with PSO and NSGA-II algorithm.
The comparison results demonstrate a nominal improvement in terms of energy savings however the
calculation time and ease of implementation and independence of MCD on parameters give it clear
advantage. Thus is suitable for solving process design optimization problems particularly related NG
plant.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

From the initial design stage, there is considerable room for
improvements. Therefore, optimization problems can be found in
almost all areas of engineering. In chemical engineering, the typical
optimization problems arise in process design (Biegler and
Grossmann, 2004) process control (Skogestad, 2000), scheduling
(Xu et al., 2012) (Dogan and Grossmann, 2008), process intensifi-
cation (Khan et al., 2013b), and real-time optimization (Groetschel
et al., 2001). Chemical engineering problems are often coupled in
terms of the process interactions and complex economics. Hence,
an optimal solution through mere intuitive reasoning is unlikely.
Therefore, optimization has become the key tool enabling profit-
able decision making to remain competitive in the chemical in-
dustry (Grossmann and Biegler, 2004).

The increase in computational capabilities has resulted in the
evolution of an optimization methodology from mere academic
interest to a technology with great impact in the process industry
(Harjunkoskia et al., 2014). This has led to the development of a
number of classes of optimization problem types along with their
solution strategies. Lorenz et al. performed a critically annotated
review of optimization techniques, particularly in the field of
process system engineering (Biegler and Grossmann, 2004). They
concluded that over the previous decades, the problems in the
process industries mostly were solved using sequential and
simultaneous methods. Sequential quadratic programming (SQP)
was the most common solver used for Non-linear programming
(NLP) problems (Himmelblau, 1972) and the Newton step with
KarusheKuhneTucker (KKT) condition was used for rapid
convergence. Nevertheless, SQP performs well with smooth
continuous convex functions but performs poorly with increasing
system nonlinearity, i.e. the abundance of local minima and
maxima, because the correct derivatives and gradient are difficult
to obtain. The problems associated with NLP leads to the devel-
opment of a broad class of derivative fee optimization method.
These methods have the advantage of easy implementation and
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little prior knowledge of the optimization problem (Biegler and
Grossmann, 2004). Most of these methods are derived from heu-
ristics that naturally spawn numerous variations. A few most
widely used derivative free optimization (DFO) methods are: Ge-
netic algorithms (Holland, 1992), simulated annealing (Laarhoven
and Aarts, 1989), differential evolution (Storn and Price, 1997),
and particle swam optimization (Kennedy and Eberhart, 1998).
They are best suited for unconstrained problems but the constraint
can be handled using penalty function methods (Efr�en, 2009)
(Khan and Lee, 2013). The performance of DFO methods degraded
with increasing number of decision variables, and with no rigorous
convergence criterion, the optimal results are always suspect.
These methods are rarely applied to the problems with more than
few dozen variables (Biegler and Grossmann, 2004). With the
advent of parallel computing the DFO optimization approach can
be easily adapted to parallel computing and tailored to the number
of available processors (Torczon, 1991). Moreover DFO methods
with no rigorous termination criteria (based on gradient and sta-
tionary points) favor global search. Thus inspired by the above
mentioned attributes of DFO methods, in this study the coordinate
descent methodology (Wu and Lange, 2008) a version of DFO
methods is modified for process system optimization problems.
The coordinate descent methodology is based on the idea that the
minimization of a multi variable function can be achieved by
minimizing it one direction at a time. Once a search direction
(after random search) is obtained, a line search utilizing one co-
ordinate at a time is performed, and the search is cycled through
each coordinate in sequence. Therefore, each cycle will have used n
(decision variables) iterations for each n search direction
(Venkataraman, 2009). After obtaining the minimum value of the
objective with the defined step size, the same search is followed
with a small step size in a narrow space or so called box space
within the vicinity of the obtained minimum. Once a locally
optimal solution is obtained, the first coordinate point is ran-
domized and the others remain fixed. The same algorithm is fol-
lowed until the next optimal point. After obtaining the second
locally optimal point, the second coordinate point is randomized
and the same search steps are followed. Therefore, a number of
locally optimal solution arrays are obtained, and the search is
terminated after obtaining the defined number of repetitive results
within the function tolerance.

The exploited modified coordinate descent (MCD) method-
ology was verified on a range of standard test problems and after
satisfactory performance on test functions (see Section 5) was
finally applied for the optimization of KSMR process. The oper-
ational parameter optimization of newly developed so-called
Korea Single Mixed Refrigerant (KSMR) natural gas liquefaction
cycle. The details of the considered KSMR process are mentioned
in Section 7. In fact, the MCD methodology was developed to
address the optimization problem encountered in the NG pro-
cessing cycle, including the operation of an NG liquefaction
plant, which was rather challenging using traditional optimiza-
tion approaches (Nogal et al., 2008). When the model develop-
ment of NG plant is performed in commercial simulator the
calculation of gradient information is proportional to the
computational complexities of the values of corresponding
function (Nesterov, 2012) thus application of MCD which is
‘quick and dirty’ is well-suited for studied problems where
problems are solved under optimization-simulation framework
(Aspenlund et al., 2010).

Tough environmental regulations, intense competition and
strong growth predictions of the NG market (Annual Energy
Outlook, 2013) make optimization of the NG processing cycle an
industrially important problem. The failure with the traditional
optimization schemes paves the way for the development of

customized optimization schemes, such as MCD, which best suits
the optimization problem faced in the NG processing cycle and
perform well for other numerical test problems.

The remainder of this article is organized as follows. Section 2
gives a theoretical description of MCD. Section 3 compares the re-
sults using standard test problems. The problem definition of an NG
processing plant is followed by the optimization results/discussion
and conclusions.

2. Theoretical description of proposed MCD methodology

The proposed MCD method was based on the idea that the
optimization of any multivariable function is performed by mini-
mizing the objective function along one coordinate at a time
(Venkataraman, 2009). On the other hand, the proposed MCD
method is different from CD methodology in obtaining a local
optimal solution and randomizing the search after obtaining a local
solution. The proposed methodology begins by choosing a random
candidate solution of the decision variables given by Eq. (1) as the
initial starting point (Li and Rhinehart, 1998):
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To obtain the search direction within the vicinity of the starting
point, a sufficiently small step size Dxi is prescribed in each of the
coordinate directionsui; i ¼ 1;2; :::;n. Obtaining an optimal solu-
tion depends strongly on the step size selection because a small
step size can linger in local points, whereas a large step size can
miss a potential solution (Srinivasan et al., 2008). Utilizing the
provided step size, and randomly chosen starting point, X0,
exploratory steps similar to a pattern search are made to find the
base point. Once a base point is obtained (see Section 3.1), cyclical
iterations are performed through each coordinate individually,
minimizing the objective function with respect to the individual
coordinate direction. If Xk is given, then the ith coordinate of xkþ1

i is
given by Eq. (2).
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Iteration of all different directions or coordinates is performed
cyclically to find the descent direction, which is equivalent to a
gradient descent. After performing a line search on all coordinates,
a new candidate solution update from X0 to X1, FðX0Þ � FðX1Þ is
obtained. Assuming X1 as the new starting point, the coordinate
descent search is performed over narrow space or the so called box
space with a smaller step size around X1 to find other more
promising solutions in the immediate vicinity of X1. An imaginary
space of given dimensions is created around X1and explored in case
the previous search overlooked some potential solution to ensure
the optimum within the box space with the given step size. After
obtaining the locally optimal solutionfðX 0

1Þ; an update fromf ðX1Þ;
the first coordinate of X

0
1ðrand;2;3; ::::;nÞ is randomized while

fixing the others to their previous obtained optimal values. The
coordinate descent search is performed using X

0
1ðrand;2;3; ::::;nÞ as

the new starting and optimal space around X2 is further explored in
box space to obtain a new optimal solution, X

0
2. This time, the

second coordinate of X
0
2ð1; rand;3; ::::;nÞ is randomized and the

search moves are made. Therefore, in this manner, a number of
locally optimal solutions are obtained. The search is terminated if
the same solutions are obtained repetitively within function
tolerance. The termination criterion is a user defined value. Repe-
tition of the same results requires more computational time,
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