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a b s t r a c t

A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechan-
ical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy,
layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic
structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave
slowness for each wave type, direction and frequency is presented. The approach does not involve any
finite differentiation scheme and is therefore computationally efficient and not prone to the associated
numerical errors.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Understanding complex wave phenomena is of paramount
importance for the successful application of ultrasonic techniques
within the non-destructive testing (NDT) and biomedical fields.
Accurate and efficient modelling of elastic wave propagation com-
plex phenomena in composite structures play a crucial role in the
development of robust algorithms for damage detection and local-
ization. One of the most prominent of these phenomena is the
so-called energy skewing (see Fig. 1), induced by the angular diver-
gence between the phase and group velocities for non-isotropic
configurations. Wave skewing results in a non-uniform distribu-
tion of energy along the wavefront. An inaccurate description of
the skewing effect in the computational models and NDT algo-
rithms can well result in an incorrect prediction of damage location
[1,2] and type.

Directional dependence of the wave slowness characteristics in
non-isotropic structures has been well discussed and investigated
by several researchers. In [3] the authors demonstrated a material
anisotropy-based, beam-steering scheme for electronically steer-
ing an acoustic beam over an angle larger than 70� in a TeO2 crys-
tal. The idea was based on the pronounced angular dependency of
the wave skewing angle in the same material. Wave beam steering
through the employment of phased array transducers [4] has been
discussed within the context of several applications including
biomedical imaging [5], structural health monitoring [6–8] and

acoustic applications [9]. With regard to layered cellular compos-
ites, the researchers in [10–12] derived wave propagation models
based on Bloch’s theorem in order to show how band-gaps and
strong acoustic focusing can be affected by structural anisotropy
in periodic lattice structures.

Calculation of the wavefront curve has formed the basis for
most researchers in order to quantify wave steering effects. The
wave skewing angle has been calculated by a number of authors
through a variety of approaches, including the application of a
Fresnel approximation to the wave propagation problem [13],
derivation through the propagating group velocities in two orthog-
onal directions within the panel [14], as well as through a Finite
Differentiation (FD) approach [15]. To the best of the author’s
knowledge, there is currently no expression directly quantifying
the wave skewing effect as a function of the mechanical character-
istics of the non-isotropic structure.

The principal objective and contributing novelty of this study is
the derivation of a systematic and robust expression relating the
wave energy skew angle to the material characteristics of the com-
posite structure under investigation. A robust FE-based approach
for efficiently computing the angular sensitivity of the wave phase
velocities for each wave type, direction and frequency is presented.
The considered structure can be of arbitrary layering and material
characteristics as FE modelling is employed. The exhibited scheme
is able to compute the wavenumber angular sensitivity (and subse-
quently the energy skew angle) by determining and post-
processing a single solution of the system. This overcomes the
drawbacks of the currently employed FD approaches.
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The paper is organized as follows: In Section 2 a general expres-
sion is derived for the angle of the propagating energy wavefront as
well as the skew angle between the phase and group velocities for
each wave type as a function of the wavenumber angular sensitiv-
ity. In Section 3 a direct expression of the wavenumber sensitivity
with respect to the direction of propagation is derived within a FE
modelling context. Numerical case studies validating the computa-
tional scheme are presented in Section 4. Conclusions on the exhib-
ited work are eventually drawn in Section 5.

2. Calculation of the wave energy skew angle

Slowness curves are particularly useful for visualizing the direc-
tion of the group velocity (see Fig. 1). On the other hand, the veloc-
ity of the wavefront (defined as the locus of ray velocity vectors
along all directions starting from the origin) in the direction nor-
mal to the wavefront is known as the phase velocity. In an aniso-
tropic material, the phase and group velocities are generally
different [16] and a clear distinction between the two should be
made to ensure that the correct velocity profile is employed when
performing health monitoring with an ultrasonic device. The phys-
ical difference between the phase and group velocities can be
described by considering a propagating wave packet (see Fig. 1).
The wavefronts remain normal to the phase velocity direction h
(or equivalently, parallel to the transducer surface exciting the
packet), however due to material anisotropy the wave packet

skews away from the normal direction by an angle w and instead
travels along a shifted ray path. The velocity of the wave packet
envelope is given by the group velocity cg . It has been well docu-
mented [14] that the group velocity vector is always perpendicular
to the tangent of the slowness curve. Moreover, it is reminded that
the slowness of a wave w can be expressed as sw ¼ kw

xw
.

When the angular rate of change for each propagating
wavenumber kw is known (see Section 3), the skew angle ww can
be determined through geometric considerations. In Fig. 1, a repre-
sentation of an infinitesimal change of angle dh and correspond-
ingly of slowness dsw is drawn. In the same figure the angle of
the tangent to the slowness with respect to the horizontal / is
shown. As vector cg is perpendicular to the drawn tangent and sw
forms an angle h to the horizontal, the skew angle ww can be deter-
mined as

ww ¼ p
2
� h� /w 0 6 h < p ð1aÞ

ww ¼ 3p
2

� h� /w p 6 h < 2p ð1bÞ

It is straightforward to deduce that

tanð/Þ ¼ ðsþ dsÞ sinðhþ dhÞ � s sin h
s cos h� ðsþ dsÞ cosðhþ dhÞ

¼ ðkþ dkÞ sinðhþ dhÞ � k sin h
k cos h� ðkþ dkÞ cosðhþ dhÞ ð2Þ

Nomenclature

B shape function derivative matrix of a single FE
C0 elastic stiffness matrix at the material principal axis
J Jacobian matrix of a single FE
K intermediate stiffness matrix employed for the assem-

bly of K
M;K mass and stiffness matrices of the periodic element
R displacement phase transformation matrix
T coordinate transformation matrix
k stiffness matrix of a single FE
q physical displacement vector for the elastic waveguide
Lx; Ly dimensions of the modelled periodic segment
L;R;B; T; I left, right, bottom, top sides and interior indices
N number of elements

cg group velocity
k wavenumber
lx; ly; lz dimensions of a single FE
s wave slowness
w wave type index
x wave mode shape vector for the elastic waveguide
e propagation constant
h wave propagation angle
g; n;l local FE coordinates
k eigenvalue of the wave propagation eigenproblem
w energy skew angle
n coordinate transformation angle
x angular frequency

Fig. 1. Illustration of the group velocity being perpendicular to the wave slowness curve for a non-isotropic structure. A wave energy skew angle w is thus formed. An
infinitesimal change of angle dh and slowness ds is also shown. The angle / is formed between the horizontal and the tangent.
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