
Short communication

A two-dimensional model on the coupling thickness-shear vibrations of
a quartz crystal resonator loaded by an array spherical-cap viscoelastic
material units

Jiemin Xie, Yuantai Hu ⇑
Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China

a r t i c l e i n f o

Article history:
Received 8 December 2015
Received in revised form 31 May 2016
Accepted 31 May 2016
Available online 31 May 2016

Keywords:
Quartz crystal resonator (QCR)
Thickness-shear mode (TSM)
Two-dimensional model
Electrical admittance spectra

a b s t r a c t

We establish a two-dimensional model on the coupling thickness-shear mode (TSM) vibrations of a
quartz crystal resonator (QCR) carrying an array of spherical-cap (SC) viscoelastic material units. The
electrical admittance of the compound QCR system is described directly in terms of the physical
properties of the surface material units. The admittance spectra about the tendon stem cells (TSCs)
acquired from our calculation are compared with the existing experiment data and found to be consistent
with each other, indicating our model has good veracity and reliability in analyzing the mechanical
properties of covered loadings. Furthermore, we calculate admittance spectra of surface Epoxy Resin
(SU-8) units with different geometrical configurations and bulk effect. It is found that both geometrical
configuration and bulk effect produce influence on the resonant frequency and admittance of the
compound QCR system.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to high sensitivity, simple structure, and easy interconnec-
tion with electronic measurement systems, thickness-shear mode
(TSM) quartz crystal resonators (QCRs) have been widely used to
monitor thin film deposition, and to characterize the mechanical
behaviors of materials bounded onto the surface by measuring
frequency shift and electric admittance spectrum [1,2]. For example,
QCRs were applied to measure mass changes in materials attached
on the surface in vapor phase [3], and employed to measure the
viscoelastic properties of polymeric films and viscosity and density
of Newtonian liquid [4–7]. In biological sensor applications, cells
are often distributed on QCR surfaces to detect the evolution of
complex shear module and sizes [8,9]. We note that in the above
applications, the resonator system is usually simplified as a multi-
layer structure [10] and analyzed through the one-dimensional
transmission line model (TLM) [11]. By measuring the electric
admittance spectra, complex shear modulus G = G0 + jG00 as well as
average thickness of the loaded layer are extracted using TLM
together with some curve-fitting technique [12]. As well-known,
TLM treats the sensor structure as a combination of a QCR main-
body and one or more isotropic, homogeneous non-piezoelectric

layers. In the same time, it assumes that the physical fields induced
by the TSM vibrations of a QCR system vary only in the thickness
direction without dependence on the two lateral directions [10].
Obviously, the geometrical configurations of surface materials/
structures will produce no influence on QCR vibrations when the
surface units are homogenized into one or multi-layer films. Thus,
TLMmodel is acceptable under the condition that the characteristic
scale lcof surface attachedmaterials/structures ismuchsmaller than
QCR thickness hQ, or materials/structures are more uniformly
distributed on QCR surface. However, with the rapid development
in QCR miniaturization, lc gradually becomes comparable to hQ,
i.e., the geometrical configurations of surface materials/structures
gradually become evident. Thus, it is required to develop proper
two-dimensional models to describe the effect of geometrical
configurations of surface loadings on the dynamic behavior of
compound QCR systems.

In this paper, a two-dimensional model on the coupling
thickness-shear vibrations of a QCR loaded by an array spherical-
cap (SC) viscoelastic material-units has been established. To
illustrate the effectiveness of our model, we calculated the admit-
tance spectra of the tendon stem cells (TSCs) and compared with
the existing experiment data. It is found that the calculation results
of two-dimensional model are consistent with the corresponding
experimental results, which indicates that our model has good
veracity and reliability in analyzing the mechanical properties of
SC shaped loadings. Following, we studied the admittance spectra
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when a QCR surface is covered by an array of Epoxy Resin (SU-8) SC
units for different geometrical configurations and dimensions.
Effect of geometrical configurations and bulk effect of surface
materials/structures on the admittance spectra is investigated in
detail.

2. Formulation of the problem

Fig. 1(a) schematically shows a QCR covered with an array of SC
material units (cells, proteins, or polymer, etc.). The bottom radius
and height of the spherical cap is denoted as r and h, respectively.
For the thickness-shear vibrations of a resonator shown in Fig. 1(a),
the governing equations of QCR [2] are

T21;2 ¼ qQ €u1; D2;2 ¼ 0; E2 ¼ �/;2;

T21 ¼ c66u1;2 þ gQ _u1;2 � e26E2; D2 ¼ e26u1;2 þ e22E2;
ð1Þ

where T21 is the non-zero stress component and u1 is the
non-zero displacement component, corresponding to the TSM
vibrations. In addition, D2 is the electric displacement and E2 is
the electric field. qQ and gQ stands for the mass density and
viscosity of quartz. c66, e26, e22 denote the elastic, piezoelectric
and dielectric constants, respectively. Since the crystal plate is
under harmonic vibrations, the time factor, expðjxtÞ, will be
dropped in the following for simplicity. j stands for the imaginary
unit, x ¼ 2pf stands for the driving frequency. The motion
equations are obtained from Eq. (1)

cQu1;22 ¼ �x2qQu1;

e26u1;22 � e22/;22 ¼ 0;
ð2Þ

where

cQ ¼ c66 þ e226=e22 þ jxgQ : ð3Þ
Then, we get the general solutions for (2) as

u1 ¼ B1 sin kQx2 þ B2 cos kQx2;
/ ¼ e26=e22ð ÞðB1 sin kQx2 þ B2 cos kQx2Þ þ B3x2 þ B4;

T21 ¼ cQ B1kQ cos kQx2 � B2kQ sin kQx2ð Þ þ e26B3;

ð4Þ

where B1; B2; B3; B4 are constants to be determined, and

kQ ¼ xðqQ=cQ Þ1=2: ð5Þ
Following turns to analysis on the vibration of each single SC

unit on QCR surface. It is reasonable to assume the deformation
of each unit primarily in x1-direction when the QCR is under the
TSM vibrations. Since the size of a SC is much smaller than QCR,
it is reasonable to approximately regard the cross-section of a SC
as a spot on the QCR surface for simplicity. We therefore take the
infinitesimal element as shown in Fig. 1(b). The motion equation
of the element can be deduced as follows

sðyþ dy; tÞp R2 � ðR� hþ yþ dyÞ2
h i

� sðy; tÞp R2 � ðR� hþ yÞ2
h i

¼ qc€uðy; tÞp R2 � ðR� hþ yÞ2
h i

dy: ð6Þ

Introducing two dimensionless parameters y� ¼ y=h; u� ¼ u=h
and applying the constitutive relation sðy; tÞ ¼ lcu1;2 þ gc _u1;2 to
(6) yields

y�2 þ 2
R
h
� 1

� �
y� � 2

R
h
þ 1
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d2u�

dy�2
þ 2 y� þ R

h
� 1
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du�
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þ g y�2 þ 2
R
h
� 1

� �
y� � 2

R
h
þ 1

� �
u� ¼ 0; ð7Þ

where g ¼ h2qcx2=G, and G ¼ lc þ jxgc stands for the shear
modulus of the SC units. qc , lc , gc denote the density, elastic shear
modulus and viscosity of the surface loadings, respectively.

The boundary and the interface conditions are

u1; T12A0ð Þjx2¼hQ
¼ hu�

; NA0spr2
� ���

y�¼0;

sjy�¼1 ¼ 0; T12A0jx2¼�hQ
¼ 0;

/jx2¼hQ
¼ �/0; /jx2¼�hQ

¼ /0:

8>><
>>:

ð8Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rh� h2

p
, R stands for the radius of the cap and A0 for

the electrode area of the quartz plate.

Fig. 1. (a) Schematic representation of a crystal plate covered by an array of spherical-cap material units. (b) The infinitesimal element on a spherical-cap material unit.
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