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a b s t r a c t

We provide a detailed analysis on the acoustic radiation force and torque exerted on a homogeneous
viscoelastic particle in the long-wave limit (i.e. the particle radius is much smaller than the incident
wavelength) by an arbitrary wave. We assume that the particle behaves as a linear viscoelastic solid,
which obeys the fractional Kelvin–Voigt model. Simple analytical expressions for the radiation force
and torque are obtained. The developed theory is used to describe the interaction of acoustic waves (trav-
eling and standing plane waves, and zero- and first-order Bessel beams) in the MHz-range with polymeric
particles, namely lexan, low-density (LDPE) and high-density (HDPE) polyethylene. We found that parti-
cle absorption is chiefly the cause of the radiation force due to a traveling plane wave and zero-order
Bessel beam when the frequency is smaller than 5 MHz (HDPE), 3:9 MHz (LDPE), and 0:9 MHz (lexan).
Whereas in a standing wave field, the radiation force is mildly changed due to dispersion inside the par-
ticle. We also show that the radiation torque caused by a first-order Bessel beam varies nearly quadratic
with frequency. These findings may enable new possibilities of particle handling in acoustophoretic
techniques.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Noncontact manipulation of particles including cells, and other
microorganisms by means of the acoustic radiation force has
become a promising method in biotechnology [1–10] and acoustic
levitation in air [11–14]. This method is label-free and depends
only on the mechanical properties of the particle and host fluid.
Moreover, apart from being translated or trapped, a particle can
be set to spin as a result of the acoustic radiation torque [15–17].
Consequently, a rotational degree of freedom is also available in
particle manipulation based on acoustic methods.

Time-harmonic waves exerts a time-averaged (over the wave
period) force known as the acoustic radiation force (ARF) on a sus-
pended object through linear momentum transfer [18,19]. Seminal
works have established the theoretical grounds to analyze the ARF
applied on a spherical particle in a nonviscous fluid, and caused by
waves having simple character, such as plane and spherical waves
[20–29]. In recent years, extensive theoretical analysis has been
accomplished on the ARF caused by spherically focused beams
[30–33], Gaussian beams [34,35], non-diffracting and vortex
beams [36–54], and a linear array [55]. Additionally, the ARF

between two or more non-absorbing particles has also been ana-
lyzed [56–62].

Acoustic wave interaction with a suspended object in an invis-
cid fluid may also generate a time-averaged torque, known as the
acoustic radiation torque (ART), by angular momentum transfer.
Theoretical investigations of the ART can be found in Refs. [63–
66]. Unlike ARF, the induced ART can only happen on absorbing
objects.

n acoustophoretic applications, which include acoustical tweez-
ers, levitators, and acoustofluidics devices, it is common that the
handled particle has radius a much smaller than the acoustic
wavelength k. This corresponds to the so-called Rayleigh scattering
regime (i.e. the long-wave limit). This limit is readily found in
acoustofluidics devices operating at 2 MHz and handling micropar-
ticles as small as 1 lm in a water-like medium [7]. Moreover, par-
ticles like biological cells or polymers behaves as linear viscoelastic
solid under a low-amplitude applied stress [67]. Therefore, a
broader investigation on how the viscoelasticity of the particle
affects the ARF and ART in the Rayleigh approximation is desired.
This gave us the motivation to theoretically analyze these phenom-
ena actuating on small viscoelastic particles in consideration of
traveling and standing plane waves and zero- and first-order Bessel
beams.
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This work is not the first to present an investigation on the ARF
and ART exerted on a viscoelastic particle. The ARF exerted on a
homogeneous polyethylene sphere was also investigated [68].
Moreover, the ARF [69–71] and ART [72] acting on a viscoelastic
spherical shell were also studied. In these articles, the analysis
was limited to particles positioned in the beam axis. The ARF and
ART were computed through a truncated series of the scattering
coefficients, i.e. the coefficients in the partial-wave expansion of
the scattered wave. Certainly, the Rayleigh scattering limit is pre-
sent in such analysis. However, it is not possible to directly draw
a relation between the particle’s mechanical properties and the
ARF and ART. Such connection is more than desirable: it gives a
clearer picture on how acoustophoretic devices may handle sus-
pended particles. We thus extend here the investigations per-
formed in Refs. [68,72] to include a beam with arbitrary
wavefront. Furthermore, we derive analytical expressions of ARF
and ART, in the Rayleigh limit, based on the mechanical properties
of viscoelastic particles. In particular, the fractional Kelvin–Voigt
model is used to describe the particle viscoelasticity [73]. We also
assume that thermoviscous effects are negligible: the host fluid is
regarded as inviscid. This assumption requires that the particle
radius a should be much larger than the thermal dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt=x

p
and viscous dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0=x

p
boundary layers [74], where Dt is the

thermal diffusivity and m0 is the kinematic viscosity. In other
words, dt; dv � a � k. Typical values of the boundary layers in
water at 2 MHz are dt ¼ 0:15 lm and dv ¼ 0:38 lm.

This paper is organized as follows. In Section 2, we present the
theory of acoustic wave scattering by a spherical particle. In turn,
scattering is directly connected to the ARF and ART phenomena
[75]. In Section 3, we derive the longitudinal and shear wave equa-
tions stemming from the stress–strain relation based on the frac-
tional Kelvin–Voigt model [73,76], i.e. a generalized Hooke’s law
with lossy fractional time-derivative terms. This model was chosen
because it can describe the frequency power-law dependence
experimentally observed on several viscoelastic materials [77–
79]. In Section 4, we derive the scaled scattering coefficients to
the monopole and dipole approximation that will be used in the
partial-wave expansion formulas for the ARF and ART. In Section 6,
we describe how to obtain the ARF and ART formulas to the mono-
pole–dipole approximation. In Section 7, we present simple ana-
lytic expressions for the ARF and ART exerted on a polymeric
particle in water at room temperature by traveling and standing
plane waves, and zero- and first-order Bessel beams. In this analy-
sis, three polymers are considered, namely lexan (commercial
name for polycarbonate plastic), low- (LDPE) and high-density
polyethylene. We established the frequency range to which
absorption effects is the main cause of ARF due to traveling plane
wave and Bessel beams for these particles. Additionally, we com-
puted the ART on the polymeric particles due to a first-order Bessel
beam. Finally, we summarize and conclude our analysis in
Section 8.

2. Scattering theory

Consider a time-harmonic acoustic wave with angular fre-
quency x propagating in a homogeneous fluid of density q0 and
adiabatic speed of sound c0. A spherical particle of radius a made
of a viscoelastic material is suspended in the wavepath – see
Fig. 1. Hence, the incident wave is subsequently scattered by the
particle.

The incident and scattered waves are described in terms,
respectively, of the velocity potentials /inðrÞe�ixt and /scðrÞe�ixt ,
as functions of position vector r and time t. The velocity potential
amplitude functions satisfy the Helmholtz wave equation

ðr2 þ k2Þ /in

/sc

� �
¼ 0; ð1Þ

where k ¼ x=c0 is the wavenumber. In the linear approximation,
the incident (scattered) pressure and fluid velocity are related by

pinðscÞ ¼ iq0x/inðscÞ; ð2Þ
v inðscÞ ¼ r/inðscÞ: ð3Þ

Assume that the origin of the coordinate system is set in the
sphere’s center. Due to the symmetry of the problem, we describe
the incident and scattered potentials as functions of spherical coor-
dinates: radial distance r to the observation point r ¼ ðx; y; zÞ, polar
angle h, and azimuthal angle u. The potential functions can be
expanded in a partial-wave series as follows [80]

/inðkr; h;uÞ ¼
X
n;m

anmjnðkrÞYm
n ðh;uÞ; ð4Þ

/scðkr; h;uÞ ¼
X
n;m

snanmh
ð1Þ
n ðkrÞYm

n ðh;uÞ; ð5Þ

where
P

n;m ¼P1
n¼0

Pn
m¼�n, anm is the beam-shape coefficient of the

incident wave [81], sn is the scaled scattering coefficient, jn is the

nth-order spherical Bessel function, hð1Þ
n ðkrÞ is the nth-order spheri-

cal Hankel function of first-type, and Ym
n is the spherical harmonic of

nth-order andmth-degree. Note that the scattering potential should
satisfy the Sommerfeld radiation condition in order to ensue that no
wave reflection occurs at infinity.

The beam-shape coefficients can be determined by inverting
the partial-wave series in Eq. (4) through the orthogonality relation
of the spherical harmonics. On the other hand, the scaled scattering
coefficients will be determined by applying appropriate boundary
conditions on the fluid-viscoelastic interface at the particle’s
surface.

3. Fractional Kelvin–Voigt model

The scattering particle is assumed to behave as a solid vis-
coelastic material. It is well established that the acoustic absorp-
tion of longitudinal (‘) or shear waves (s) in a wide range of
viscoelastic materials obeys a power-law of frequency variation
over several decades [82],

ajðxÞ ¼ a0;jxyj ; j 2 f‘; sg; ð6Þ

Fig. 1. An incident beam (dark-green vertical bars), with wavelength k and
represented by the velocity potential amplitude /in, hits a small viscoelastic
particle (red circle) of radius a suspended in a fluid with density q0 and speed of
sound c0. A Cartesian coordinate system is set in the particle’s center with an
observation point denoted by r ¼ ðx; y; zÞ. Spherical coordinates ðr; h;uÞ are also
illustrated. The scattered waves (light-green arcs) are represented by the velocity
potential amplitude /sc. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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