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Trapped modes in a hard cylindrical tube with a local axisymmetric enlargement or bulge and filled with
a uniform acoustic medium is studied. The governing Helmholtz equation in the cylindrical coordinate
system is employed to deal with this problem through the domain decomposition method and matching
technique. The trapped modes and the corresponding frequencies less than the threshold frequency or
cut-off frequency are derived. It is found that in addition to the fundamental mode, the second- and
higher-order trapped modes exist and depend on the geometry parameters of the local bulge. The effects
of the bulge radius and width on the frequencies are discussed. The local bulge leads to a decrease of the
frequencies and the corresponding vibration mode is localized near the bulge. A multimodal analysis is
made and frequency band gap of generalized trapped modes is also studied. A frequency band gap
depends on the radius of a bulge and is independent of its width. The obtained results can be extended
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to analyze bound states in quantum wires.
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1. Introduction

Trapped modes refer to localized time-harmonic oscillations of
finite energy within a medium which is unbounded in at least one
direction. Trapped modes are observed to exist in many fields due
to various causes. For example, for a two-dimensional acoustical
waveguide, Callan et al. [1] studied trapped modes for an infinitely
long strip containing a circle. Acoustic resonances and trapped
modes in an infinitely long cylindrical tube with a sound-hard
sphere were further formulated [2,3]. In addition, Martin [4,5] con-
sidered acoustic waves in a rigid axisymmetric tube with a variable
cross-section. The essence of such problems is to solve eigenstates
of the Helmholtz equation subject to appropriate boundary condi-
tions. For this kind of problems, there are a wide application.

In quantum waveguides, trapped modes are called bound
states. The Helmholtz equation is equivalent to the
time-independent Schrodinger equation. Using finite differences
in a truncated finite domain, Schult et al. [6] first studied the bound
states in an unbound system of crossed wires and calculated the
energy and wavefunction for an electron at the intersection of
two symmetric narrow regions in a two-dimensional plane. Later,
Amore et al. [7] extended the above approach to treat asymmetric
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cross, T- and L-shaped configurations, and found that except for the
even-even case, there are other odd-odd and even-odd bound
states of an electron localized at the intersection of two wires
under some geometry constraints. Delitsyn et al. [8] further uti-
lized the variational approach to cope with trapped modes in finite
quantum waveguides. Londergan and Murdock [9] compared sev-
eral methods to solve the trapped mode problems or quantum
bound states for two-dimensional pipes. Andrews and Savage
[10] applied the conformal mapping to analyze bound states for
an infinite strip with a smooth bulge. Ordonez et al. [11] used
the integral equation method to investigate bound states for two
open quantum dots connected by a wire in the two-dimensional
plane. Avishai et al. [12] studied the existence of bound states of
two-dimensional Helmholtz equations with Dirichlet boundary
conditions in open domains. Furthermore, based on the approach
of the wave equation and appropriate boundary conditions, Helie
[13] formulated a model of the linear acoustic propagation in
axisymmetric waveguides. A full multimodal analysis of a two-
dimensional open rectangular-shaped groove waveguide has been
made for both TE and TM modes using a Galerkin approximation
[14]. For two parallel waveguides of different widths in a two-
dimensional plane, bound states can occur in coupled quantum
wires through a finite length window [15]. The analysis is further
extended to three-dimensional case: two concentric circular cylin-
drical waveguides coupled by a finite length gap along the axis of
the inner cylinder [16]. Later, for a slowly varying cross section,
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Fig. 2. A semi-infinite tube with an end axisymmetric enlargement.

Gaulter and Biggs [17] investigated acoustic trapped modes
through asymptotic approximation method.

Recently, Wang [18] presented the domain decomposition
method and matching technique to solve trapped modes for a
membrane strip with a local enlargement in the two-dimensional
plane. Furthermore, the method is extended to study vibration of
a membrane strip with a segment of higher density and trapped
modes were also found due to inhomogeneity [19].

This paper is focused on waveguide of an infinite or semi-
infinite tube. It is found that trapped modes due to the presence
of a local bulge exist near the bulge. The frequencies of trapped
modes are numerically determined by the domain decomposition
and matching technique and they are less than the threshold or
cut-off frequency of a uniform tube without any bulge. In particu-
lar, in addition to the fundamental mode, the second- or higher-
order trapped modes exist.

2. Infinite tube with a local enlargement

Consider the waveguide in an infinite hard cylindrical tube of
radius R, filled with a linear uniform acoustic medium, in which

a local enlargement of radius R*(R* > R) with finite width 2H
appears in the tube, as shown in Fig. 1. A cylindrical polar coordi-
nate system is chosen such that the z-axis is orientated in the cen-
troid line or longitudinal axis of the tube. When acoustic waves
travelling in the tube, only axisymmetric excitations are consid-
ered so that the whole problem is axisymmetric and velocity
potential ¢ considered here is independent of an angular variation
and, under the assumption of irrotational motion with small
amplitude, satisfies the following governing equation
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where c is the speed of sound. When denoting the velocity potential
as ¢ = ®(p,Z)et, w being angular frequency, the above governing
equation is reduced to the Helmholtz equation
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As we know, acoustic waves propagating along an infinitely
long tube must have a minimum frequency as the fundamental fre-
quency and those with frequency in excess of the fundamental fre-
quency can travel. However, if a tube has a local enlargement, the
fundamental frequency is reduced, as will be seen, and local vibra-
tion of trapped modes occurs near the local enlargement. In order
to make it easier to analyze local vibration near the enlargement
zone, let us introduce dimensionless variables as follows

P p zZ wR
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Thus Eq. (2) is rewritten as a normalized form
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For an infinitely long tube, the one-dimensional solution to Eq.
(4) is easily found by neglecting z, and it is w = Jy(kr) with the
requirement of a finite value at r = 0, where J,(x) is the zeroth
order Bessel function of the first kind. Furthermore, due to the hard
tube wall, we have vanishing Dirichlet boundary conditionatr =1,
the fundamental frequency parameter k is obtained to be
J1 = 2.4048 as the lowest positive value such that J,(k) = 0 and
the corresponding eigenfunction is J,(117). In other words, velocity
potential in the cylindrical waveguide has a threshold value or cut-
off frequency 4; = 2.4048. Similarly, if removing 4, and other nat-
ural frequencies such as 4;(j = 2,3,...,) as threshold value of cut-
off frequency, these modes mean generalized trapped modes. In
fact, for the latter, the frequencies of propagating modes may also
lie in the region.

Our task is to seek trapped modes, i.e. localized time-harmonic
oscillations of finite energy occur near the local enlargement of the
tube. Since our attention is focused on the local vibration near the
local enlargement, we denote the tube domain without bulge as

(3)

Kw = 0. (4)

Eablel (& for an infinite tube with a local ax bulee with h— 1 |zl = h, r <1 (Region I), and the bulge segment as |z| < h,r <b
onvergence rate of k; for an infinite tube with a local axisymmetric bulge wit =1 (Regiorl H), Where 2h arld Zb designate the Corresponding dimen-
N 2 6 10 20 40 60 sionless width and diameter of the bulge segment, respectively,

b=2 1.7653 1.7734 1.7751 1.7762 1.7767 1.7767 H R*
b=10 15522 15548 15572 15584 15591 15591 h= R’ b= ® (5)
Table 2
Frequency parameter k; of trapped modes for an infinite tube with a local axisymmetric bulge with h = 1.
b 1 1.5 2 4 8 10 20 40
I 2.4048 1.9743 1.7767 1.5953 1.5616 1.5591 1.5570 1.5569
ky - - - 1.9926 1.6721 1.6326 1.5829 1.5732
ks - - - - 1.8592 1.7564 1.6143 1.5805
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