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a b s t r a c t

This paper presents a mode-tracing approach for elastic guided waves based on analytically computed
derivatives and includes a study of interesting phenomena in the dispersion curve representation.
Numerical simulation is done by means of the Scaled Boundary Finite Element Method (SBFEM). Two
approaches are used to identify the characteristics of the resulting wave modes: Taylor approximation
and Padé approximation. Higher order differentials of the underlying eigenvalue problem are the basis
for these approaches. Remarkable phenomena in potentially critical frequency regions are identified
and the tracing approach is adapted to these regions. Additionally, a stabilization of the solution process
is suggested.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Simulations and modeling in material science and research
have significantly increased in value over the past decades. As
new methods arise and higher precisions in measurements are
possible, the demand for simulations in several fields has grown
steadily. Although computational capabilities have developed to
impressive dimensions, the demand for computational power of
classical simulations has exceeded these capabilities. Therefore,
new problem specific simulation tools are optimized for many
fields and problems. A limitation or purpose-built way of usage
is usually the consequence of this optimization. A common
approach is to optimize the solution process by fixing a parameter,
meaning that the system is solved efficiently, but only for one
given value of this parameter. Tracing techniques attempt to trans-
form these fixed parameter approaches into continuous solution
sets without losing computational advantages.

The propagation of elastic guided waves is a field with increas-
ing need for simulations. The significance of this field is shown by
its range of applications such as Non-destructive testing [1–3],
structural health monitoring [4] and material characterization
[5]. Thus, an increasing number of experiments and publications
on guided waves demand simulations with high complexity. The

representation of the time harmonic wave propagation of guided
waves with dispersion curves is crucial for the high complexity
of the problem at hand, i.e. the frequency-dependent phase and
group velocities of guided waves in given structures and the corre-
sponding mode shapes. The computation of these dispersion
curves works with high frequencies and steadily increasing dimen-
sions of geometries, which easily explains the high computational
complexity. Additionally many applications solve inverse problems
and therefore have to perform these complex simulations
repeatedly.

Simulation with sufficient accuracy is, therefore, a challenging
task. In principle, established Finite Element Methods (FEM) are
able to model and simulate wave propagation and its phenomena.
The FEM is a powerful tool which works effectively for a number of
purposes, however, it is not designed for this specific problem.
Small wavelengths in large geometries require a highly extensive
number of degrees of freedom and therefore increase computa-
tional costs significantly. Even more so, the high frequencies ask
for small time steps in transient simulations. For the case of
repeated simulations, especially in the solution process of inverse
problems, the computational costs are often not acceptable.

Several approaches have been suggested in order to increase
efficiency while preserving accuracy. Especially the case of waveg-
uides with long homogeneous sections is of high interest as it
appears regularly in many applications. Using this rather simple
property, computational time can be decreased significantly with-
out losing accuracy.
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Analytical approaches are well known and highly efficient for
certain structures. Solution procedures to compute dispersion rela-
tions and mode shapes have been developed for infinite plates and
infinite cylinders [6–9]. These procedures allow for better analysis
of signals or extraction of model reflection coefficients from stan-
dard Finite Element analysis. This extraction allows for efficient
simulation of interactions with cracks [12] or notches [10,11,13],
thereby rendering it a powerful tool for said specific geometries.

Semi-analytical methods allow for the inclusion of more general
geometries or inhomogeneous materials in infinite waveguides. In
essence, these methods describe extended sections of the model
analytically and the remains numerically. An early approach of
Kausel [14,15] was one of the first formulations by using linear
interpolation in the thickness direction of plates, known as the
Thin Layer Method (TLM). The resulting quadratic eigenvalue prob-
lem computes wave numbers in plates or soil layers and efficiently
simulates wave propagation in soil [16,17], anisotropic plates [18]
and even piezo composite layers [19]. Furthermore, this method
allows for analytical computation of stiffness elements [20].
Broader numerical insights can be found in [21].

For the specific case of ultrasonic guided waves in solids, the
concept of discretizing the cross-section and applying an analytical
solution in the propagation direction is often called Semi-
Analytical Finite Element (SAFE) Method [22–24]. Similar to TLM
a quadratic eigenvalue problem is solved but the approach is
extended to three-dimensional domains. The cross-section is
described by classical Finite Elements. Model decomposition can
be applied to propagate a given signal along a section of the waveg-
uide [25,26]. Even coupling to full FEM models is possible and
allows the inclusion of defects [27,28] and plate edges [29].

This paper is based on the Scaled Boundary Finite Element
Method (SBFEM) [30–33]. The SBFEM is a general semi-analytical
method discretizing the boundary of the domain only and has
shown to combine several advantages of FEM and the Boundary
Element Method (BEM). The original idea of this approach was to
describe unbounded domains using Finite Elements [34,35] with-
out being bound to layers such as the TLM. Numerous applications
of SBFEM have arisen since its first conception and it is possible to
describe bounded and unbounded domains in the time domain and
frequency domain [36–40].

The SBFEM has recently been introduced to compute dispersion
curves and mode shapes for infinitely long waveguides of constant
cross-section [41,42]. A formulation in the frequency domain
allows for rapid computation of dispersion curves and mode
shapes for given frequencies. Similar to the TLM and the SAFE
Method, an eigenvalue problem needs to be solved. New publica-
tions introduced novel approaches for boundary conditions in
propagation direction [44,45] and most recently an innovative pro-
posal to compute stiffness matrices based on this approach has
been presented [46]. Coupling with stiffness matrices derived by
FEM or coupling with stiffness matrices derived by classical SBFEM
is easily possible and extends the possible range of applications
radically.

While highly effective for single frequencies, it remains a fre-
quency discrete method. Especially for signals in the time domain
the number of frequencies of interest can lead to limitations in effi-
ciency in this approach. Thus, tracing or, more precisely, mode-
tracing of dispersion curves and mode shapes is a promising solu-
tion to overcome these limitations. Straightforward approaches
like extrapolation or interpolation of previously computed solu-
tions have been proposed in the context of the SBFEM [43] and
FEM [52]. While assisted by inverse iteration those approaches
are fast and applicable in many cases, but they can fail if mode
behavior is too unpredictable. For more complex domains, modes

can have strong and weak coupling effects [48,49,47], such as veer-
ing or locking. These effects lead to sudden changes in the model
behavior and weaken the applicability of known solution
approaches as the sudden change in behavior is not consistent with
the behavior of previously computed solutions. If the sudden
change of behavior is not identified, the applied extrapolation
can lead to a different or even an unwanted set of solutions.

This paper proposes a different approach which uses analyti-
cally computed derivatives of the underlying eigenvalue problem
[50,51]. Information about coupling effects is easily found in the
eigenvalue derivatives, even at a distance of the critical frequency.
Instead of simply adjusting the step size, this approach will com-
pute a high number of derivatives. Thereby, it is possible to
describe large parts of the dispersion relation and mode shapes
by Taylor approximation and to describe a radical change of behav-
ior through coupling effects by Padé approximation.

To formulate and discuss this approach, three steps are
described in this paper. Firstly, the SBFEM formulation for elastic
guided waves is presented and the resulting eigenvalue problem
is shown. Secondly, the process of differentiating an eigenvalue
problem is discussed and the approximations with Taylor and
Padé are introduced. Lastly, the approximation process is applied
to numerical examples. Especially the behavior of coupled modes
at critical frequencies is discussed.

2. Theory

This section presents an overview of mode-tracing with high
order derivatives in the context of the SBFEM. First of all, the gov-
erning equations of elastic guided waves are briefly introduced and
the major steps of SBFEM formulations are shown. Next, the result-
ing eigenvalue problem is differentiated and problem specific opti-
mizations are proposed. Lastly, the approximation process with
higher derivatives of eigenvalue problems is described.

2.1. Governing equations

For a body in vacuum the relation between the strain r and the
displacements u is described by

LTrþx2qu ¼ 0 ð1Þ
as the governing set of equations for three-dimensional linear elas-
todynamics, if all body forces vanish [33]. L is a differential operator
and the relation given by (1) is dependent on the angular frequency
x and the mass density q. By introducing the elasticity matrix D
and by applying Hooke’s law the relation between r and the strain
e reads

r ¼ De: ð2Þ
Eq. (2) is transformed into

r ¼ DLu: ð3Þ
by describing strain e ¼ Lu through the displacement amplitudes u.

Previous publications [41–43] have derived the theoretical
background to compute dispersion relations of guided waves in
plates, axisymmetric structures and general three-dimensional
waveguides using SBFEM. For the novel mode-tracing approach
two aspects are essential. Firstly, the cross section of all mentioned
geometries is discretized by means of Finite Elements while an
analytical ansatz describes the direction of wave propagation. Sec-
ondly, the displacement field u or, more precisely, the values scal-
ing the Finite Element shape functions û are computed by solving
an eigenvalue problem
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