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The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was
rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational
approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rect-
angular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the
boundary between the regions of existence for wedge modes of even and odd symmetry in regions of
parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rect-
angular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of
cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always
exists, apart from special cases that are characterized.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic waves guided at the straight edge of an elastic medium
were first discovered in numerical calculations by Lagasse [1] and
Maradudin et al. [2] in the early seventies of the last century. Since
then numerous experimental and theoretical investigations of such
one-dimensionally guided waves have been carried out (for
reviews see [3-6]), which have been termed acoustic wedge waves
or line acoustic waves. Most of these studies were concerned with
isotropic materials, and effects of anisotropy have rarely been
addressed explicitly in the past ([7] and some works referred to
in [5]).

The character of the displacement field of wedge waves (WWs)
in anisotropic media may be very different from that in isotropic
wedges. While in the latter, wedge acoustic waves may be charac-
terized as even or odd/flexural, this is no longer possible in aniso-
tropic wedges that lack reflection symmetry with respect to their
mid-plane. Also, anisotropy leads to new phenomena like
pseudo-wedge waves [8,9] and different types of wedge modes
on two adjacent rectangular wedges at the same sample [9].

Wedge acoustic waves in ideal wedges made of a homogeneous
material share with surface acoustic waves (SAW) in homogeneous
media the property of being non-dispersive, i.e. their phase veloc-
ity does not depend on their frequency. Another interesting
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analogy is the problem of their existence in arbitrary propagation
geometries of anisotropic media. In the case of surface acoustic
waves, rigorous statements were established concerning their exis-
tence, involving criteria based on bulk wave properties [10,11]. In
the case of wedge waves, a rigorous existence proof has so far been
provided only for isotropic media [12,13]. In this work, we try to
establish criteria for the existence of wedge waves in anisotropic
rectangular wedges with certain symmetries. These criteria are
based on surface acoustic wave properties.

Already in their pioneering study of WWs in a Poisson medium
(i.e. an isotropic medium with equal Lamé constants), Moss et al.
[14] found that these guided waves do not exist for all wedge
angles. Recently, Kamotzki [12] has given a proof for the existence
of WWs in isotropic wedges for wedge angles smaller than 90° and
arbitrary Poisson ratio. This proof was extended by Zavorokhin and
Nazarov [13], and these authors specified bounds for the existence
domains of symmetric vs. anti-symmetric WWSs in the
two-dimensional parameter space with parameters Poisson ratio
and wedge angle. These existence proofs are based on a variational
principle, i.e. the Rayleigh quotient with suitable test functions. A
motivation of our work was the question to what extent this
approach may be extended to wedges made of anisotropic media
and whether general statements can be made concerning the
existence of WWs, based on SAW properties on the wedge faces.

Numerical studies for rectangular wedges reveal that, similar to
surface acoustic waves, the character of the displacement field of
wedge waves strongly varies with the orientation of the apex line
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and the two surface normals in the same anisotropic elastic mate-
rial. Examples are presented for the cubic crystals silicon, stron-
tium fluoride and indium arsenide. While for certain orientations
a wedge wave is found with displacement field strongly localized
at the wedge tip, this is not the case for others, where the displace-
ment field penetrates far into one of the two surfaces of the wedge,
and it requires precise calculations to decide on the basis of
numerical results whether a guided wave exists in these cases.
The latter of the above-mentioned wedge configurations share
the property of the two surfaces being not equivalent due to lack
of mirror symmetry with respect to the wedge’s midplane. They
include the silicon wedge with apex direction [1—10] and surface
normal vectors along (110) and (001) and two non-equivalent
configurations with apex direction [1—-10] and surface normal
along (111) and (112).

The numerical calculations were carried out on the basis of an
expansion of the displacement field in a double series of Laguerre
functions [2,14,15]. This method is particularly suited for the
investigations reported here as its accuracy and convergence prop-
erties are essentially controlled by only one parameter, namely the
number of Laguerre functions included in the double series.

After presenting numerical results obtained with the Laguerre-
function method mentioned above, the variational approach by
Kamotzki, Zavorokhin and Nazarov for proving wedge wave exis-
tence in isotropic media is applied to acoustic waves propagating
along the tip of rectangular anisotropic edges. With a straightfor-
ward generalisation of the test functions introduced by these
authors, a criterion is derived for the existence of wedge waves
in two rectangular wedge configurations with two equivalent sur-
faces and elastic media of tetragonal symmetry. This criterion is
applied to the special case of cubic media and its predictions com-
pared to the results of numerical calculations.

With a test function that is suitable for wedges with two non-
equivalent surfaces, a sufficient condition is derived for the exis-
tence of wedge waves in anisotropic rectangular wedges. It is
shown that this criterion is satisfied for two of the three aforemen-
tioned wedge configurations with non-equivalent surfaces in
media of cubic symmetry.

2. Formulation of the problem

Propagation of acoustic waves is considered in an elastic wedge
filling the spatial region x; > 0, x, > X3 cot §, where 6 is the wedge
angle (0 < 0 < 7). The numerical examples for anisotropic wedges
presented in Section 3 all refer the rectangular case (6 = t/2). The
apex direction of the wedge is along x;. Acoustic wave propagation
is described in the framework of elasticity theory involving the dis-
placement field (u,(x1,X2,X3,t)), which depends on the three spa-
tial coordinates and on time t. The index o =1,2,3 labels the
three Cartesian components. The displacement field has to satisfy
the equation of motion

o )

—— Uy = —T . 2.1
e oy (2.1)

o
Here and in the following, we invoke the convention of summation
over repeated Cartesian indices. In (2.1), (Tg) is the stress tensor,
which is expressed in terms of displacement gradients via

0
Tot/f = Ca/mv ﬁuﬂ. (22)
v

(Capuv) is the tensor of the elastic moduli, referring to the coordinate
system introduced above, and p is the mass density of the wedge
material. In addition, the surfaces of the wedge have to be
traction-free, i.e. for any point on the wedge faces, the quantities
TusNg, p=1,2,3, have to vanish, where Ny, f=1,2,3, are the

three components of a vector normal to the corresponding sur-
face.The displacement field may be decomposed as

Uy (X1,X2,X3,t) = Uy (kx2, kxs) explik(x; — vt)], (2.3)

where k is a one-dimensional wave-vector and v the phase speed
along the apex line. The functions U,(y, z) are solutions of the eigen-
value problem defined by the equations

pV*Uy(y,2) = DgTop(v,2), (2.4)
where
Tm,;(y,z) = CopDyUL (Y, 2) (2.5)

which have to be satisfied in the domain z > 0, y > zcot@ along
with the boundary conditions

T3(y,0) =0, (2.6)

sin 0T 5 (z cot 0,2) — cos 0T ,3(z cot 0,z) = 0. (2.7)
The operator (D
D, = i, D, = 8/(9}7 D3 = 8/(92 (28)

For the numerical analysis of rectangular wedges, we follow [2] and
expand the functions U,(y,z) in a series of products of Laguerre
functions, ¢,(x), n=0,1,2,...,N—1,

) is defined as

Z e P (¥)P,(2). (2.9)

mn=0

The velocities v and expansion coefficients e\, follow from the
eigenvalues and eigenvectors of a Hermitian matrix,

ZM,,;’;M ), (2.10)
p.q=0
where
Mo == / / D@ (¥)P1(2)] Copr Dy, (¥) 4 (2)]dydz.
2.11)

(More details and an extension to non-rectangular wedges are
described in [14-16].)

3. Numerical findings

Numerical calculations were carried out for rectangular wedges
of anisotropic materials with cubic symmetry. The anisotropy can
be characterized by the Zener ratio A = 2c44/(c11 — C12). (We follow
here the convention that when carrying Voigt indices, the elastic
moduli are denoted by lower-case c.)

In the case of silicon and coordinate axes along the crystallo-
graphic (cubic) axes, a well tip-localized wedge wave is found.
An easily applicable criterion for the presence of a fully tip-
localized wedge mode in the numerical calculations is the distance
of the lowest eigenvalue in (2.4) and (2.5) from the continuum of
surface and bulk modes. Alternatively, one may investigate the
displacement field itself. To characterize the degree of
edge-localisation, we define a penetration depth for each surface
of a rectangular wedge in the following way:

[21U(0, kxs) x5 dxs
[ 1U(0, kxs)[*dxs

dy = (3.1)

121U (kxy, 0)Pxadx,

ds = -
2 |U(kx,, 0)[*dx,
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