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a b s t r a c t

The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of
Green’s function formalism and streamlined Huygens’ principle. Green’s functions resemble the building
blocks of the sought displacement waveform, superimposed and weighted according to the simplified
distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary
circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform,
Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are
calculated, and the corresponding weight distributions are compared. To demonstrate the applicability
of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure
are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from
the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect
to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile
of the excitation laser pulse and its corresponding spatial normal-force distribution.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ultrasound-propagation simulations in solids are indispensable
in laser ultrasonics [1–5], optodynamics [1,6], optical pump–probe
experiments [7,8], studies and applications of acoustic emission
[9], non-destructive testing [10], seismology [11–15] and in
metrology for sensor calibration [16–18].

Wave-propagation dynamics is described by a set of differential
equations, initial and boundary conditions, which, in order to
obtain a waveform solution, can be solved in a number of different
ways: analytically, using a finite element method (FEM), a finite
difference method (FDM), or Green’s function formalism. Although
the analytical solution is the most desirable, it is often nearly
impossible to derive it due to the intertwined complexity of the
wave equations, initial and boundary conditions.

FEM and FDM are valid methods for solving such a set of
equations, especially for free-form geometries. They offer only
whole numerical solutions for each specific instance and have to
be entirely repeated for even a slight change in the geometry of
the problem. Their solutions are bandwidth limited, depending
on the density of the modeling mesh. Sharp changes in

thus-calculated solutions are often accompanied by residual
numerical oscillations that appear as unwanted artifacts in the
waveform, bearing no physical meaning [19]. For this reason, the
modeling of laser ultrasound often requires a dense mesh in order
to distinguish different, sharp wave-arrivals. This requires
high-frequency solutions, which, in turn, require large computing
power to obtain them in a reasonable amount of time.

Green’s function formalism, when used appropriately, enables
modeling of different wave sources and their combinations with-
out any major change to the model. For example, it is possible to
model light-pressure-induced waves [20], thermoelastic waves
and ablation-induced waves that are all present in laser ultrasonics
[1,2,4]. Using this method, it is also possible for a composite wave-
form solution to be broken down to individual waves where each
can be isolated in order to discern its propagation. Once Green’s
functions have been calculated or their band-limited counterparts
obtained experimentally [19,21], this approach allows for signifi-
cant changes in source-sensor selection without the need to repeat
the entire equation-solving process. In another contrast with the
FEM and FDM, by means of a deconvolution [22,23], Green’s func-
tion formalism can be used to solve a backward problem – finding
an unknown input signal from the known output.

The model, described here, is based on the interwoven concepts
of Green’s function formalism and the statistically streamlined
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Huygens’ principle. It accounts for the real extents of the spatial
source distributions and sensor sensitivity distributions. Huygens’
principle has been used in waveform modeling before [24–26],
predominantly to describe wide sources, while not simultaneously
including sensor averaging.

The basic constituents of this computational approach are the
direct time- and space-domain Green’s functions as opposed to
the transformed, temporal- and spatial-frequency-domain Green’s
functions [27]. To obtain either of them, the elastodynamic partial
differential equation are converted to ordinary differential equa-
tions with integral transform techniques. The time domain is
transformed into the temporal-frequency domain with either the
one-sided Laplace or the Fourier transforms while a suitable choice
for a radially-symmetric source is the Henkel transformwhich con-
verts a space domain into a spatial-frequency domain [28,29].

The most demanding step in obtaining the direct time- and
space-domain Green’s functions is the inversion from the spatial-
frequency domain to the direct space domain. The final results
can rarely be given as closed-form expressions [30], thus careful
numerical integration avoiding numerous singularities has to be
performed [31].

The temporal dependence of the source is included in our mod-
eling as a convolution of a time-domain Green’s function with a
suitable temporal profile of the source. Since a convolution in the
time-domain corresponds to the multiplication in frequency-
domain, the frequency-domain Green’s function [27] can be taken
as the starting building block of our construction scheme, thus
avoiding one unnecessary step in performing the temporal convo-
lution using a numerical routine based on the fast Fourier trans-
form. One might be as well tempted to perform the same
operation by including the radially-symmetric spatial distribution
already in the space-frequency domain. Even though this step
can be realized in some specific cases [28,29], it does not generally
simplify the computation but rather makes it even more demand-
ing by possibly introducing additional singularities into the inver-
sion integrals.

Here, we provide a detailed step-by-step procedure. We
describe how to construct an area-to-area (AA) waveform model
from a much simpler point-to-point (PP) model with gradual over-
coming of its limitations by incorporating the real geometric
arrangements of both the source and the sensor, by means of a
set of statistically weighted Green’s functions.

A plate is chosen as it is one of the simplest and most frequently
encountered geometric shapes, with practical scientific and engi-
neering applications, while the ultrasound is chosen to be induced
by circularly symmetric laser pulses. Out-of-plane displacement
waveforms are commonly measured on either of its surfaces there-
fore, to facilitate their comparison and practical usefulness, the
time-domain laser-pulse-induced surface waveforms are
simulated.

To demonstrate the flexibility of the method, three distribution
combinations and their corresponding weight functions are pre-
sented; they all incorporate a uniform sensor sensitivity distribu-
tion and a uniform (top-hat) [20], a Gaussian and an annular
(ring) [20,26,32,33] spatial source distribution.

Such a model enables a more accurate representation of high-
frequency waves with wavelengths shorter than the spatial extent
of the source and the sensor, while Green’s functions inherently
provide a well-understood physical interpretation of the wave
propagation theory.

Measurements of the light-pressure-induced ultrasound have
been carried out using a piezoelectric sensor and two lasers, one
with a uniform and the other with a Gaussian beam profile. To
illustrate the viability of the AA model, a comparison of the mea-
surements with the AA model and the simpler PP model is exam-
ined and evaluated in detail.

2. Development of the model

The main physical outlines of the problem are as follows: the
transient source acts on the top surface of a homogeneous and iso-
tropic plane-parallel plate and induces transient mechanical waves
that propagate through it, i.e. ultrasound. Its surface waveforms,
time histories of surface displacements, are of interest, since they
are most commonly measured. The waveforms under considera-
tion are comprised of waves that travel either directly from the
source or are reflected, however many times, from the plate’s sur-
faces but, at the same time, are not reflected from its sides. The
model is thus intended for use in time-frames in which the plate
can be considered infinitely large and in cases in which waveforms
are measured outside the impact area, since this is a practical and
quite common measuring arrangement.

2.1. Existing point-to-point model

Sound propagation in solids is described by a system of wave
equations, their initial and boundary conditions, the solutions of
which, for a d-function input component, are Green’s functions
gðv0;w0; tÞ. They can be thought of as material transfer functions,
which transform an input signal f dðv0; tÞ ¼ dðv � v0ÞdðtÞ at a point
v0 into an output signal udðw0; tÞ at a point w0. The geometric
arrangement is shown in Fig. 1(a). Green’s functions are highly
specific, depending on the elastic and geometric properties of each
material as well as the relative positions of the impulse input and
waveform output locations. It is understood that, while not explic-
itly stated in the notation, Green’s functions depend on the elastic
constants of the plate along with its thickness.

Because of the d-function input condition, the direct physical
use of the Green’s functions is somewhat limited to such cases
where said point-to-point approximation applies. Due to their
algebraic linearity and temporal invariability, this limitation can
be overcome, in the temporal dimension at least, by performing a
time convolution of a point-to-point Green’s function
gPPðv0;w0; tÞ with a temporal part of the point-source impulse dis-
tribution. The latter is assumed to have separable temporal and
spatial dependencies and can be written as:

f Pðv0; tÞ ¼ J0sðtÞdðv � v0Þ; ð1Þ
where J0 is the magnitude of the source impulse equal to the linear
momentum transfer to the plate at a point v0 and sðtÞ is its normal-
ized temporal distribution. In this point-to-point (PP) model, the
displacement waveform at a point w0 due to a point-source is
obtained:

uPPðw0; tÞ ¼ J0

Z 1

�1
gPPðv0;w0; sÞsðt � sÞds: ð2Þ

In reality, however, the source impulse usually does not act on
an infinitesimally small point on the surface but on a certain
macroscopic area. It is for this reason that the spatial limitation
of the PP model must be addressed further in the expanded math-
ematical models.

2.2. Incorporation of the spatial source distribution

In this model expansion, a statistically streamlined Huygens’
principle is used to calculate, at a certain detection point w0, a dis-
placement waveform uAPðw0; tÞ that was induced by a macroscopic,
circularly symmetric source impulse f Aðv ; tÞ impacting a circular
area of random points v with a radius of rF0 and centered at v0.
The corresponding geometry is shown in Fig. 1(b). A distinction
has to be made between cases where points v and w0 are coplanar
and where they are not. If point w0 does not lie on the impact sur-
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