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a b s t r a c t

The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a
semi-infinite elastic substrate is investigated in the present paper with the consideration of surface
effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory
and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the
interface between the film and the substrate. This work focuses on the new features in the dispersion
relations of different modes due to surface effects. It is found that with the existence of surface effects,
the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface
constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion
modes increase with the decrease of the film thickness and the increase of the surface constants.
However, surface effects play different functions in the frequency dispersions of different modes,
especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first
mode dispersion, depending on the presence of the surface effects on the surface and the interface.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Taking advantages of the electro-mechanical coupling effects,
piezoelectric nanoelements, such as piezoelectric nanowires and
nanofilms, have been widely used in NEMS (Nano-Electro-
Mechanical Systems) as nanoresonators, nanotransducer and
nanoactuators. These piezoelectric devices possess great potentials
in a wide range of applications where characteristic structural
responses are usually utilized when dynamic loads, vibration and
elastic waves in general, are applied [1–4]. For instance, based on
the analysis on the shift of resonance frequency, Asemi et al. [4]
used AlN piezoelectric nanofilms as nanoresonator and realized
the nanoscale mass detection. It is well recognized that due to
the extremely large ratio of surface area to volume, surface effects
can have significant impact on material properties and behavior
when the characteristic lengths of materials reduces to nanome-
ters. Therefore, analysis on the vibration and wave propagation
considering surface effects becomes crucial to proper designs of

piezoelectric nanosensors. To incorporate surface effects in the
framework of continuum mechanics, Gurtin and Murdoch [5] and
Gurtin et al. [6] developed the surface elasticity theory for elastic
solids which proved its feasibility by the direct atomistic simula-
tions [7,8]. Coupling the piezoelectric effects, Pan et al. [9]
extended the surface elasticity theory for piezoelectric materials
in which surface electric displacements and the corresponding sur-
face piezoelectric and dielectric constants are introduced. The sur-
face elasticity theory assumes that a surface layer of zero thickness
is perfectly adhered to the bulk material and the in-plane surface
stresses, as well as the surface electric displacements for piezoelec-
tric materials, exist in the surface layer. Moreover, it is hypothe-
sized that surface stresses should include one part from the
residual surface tension independent of the mechanical and
electric fields of the bulk material, and another part from the sur-
face elasticity which depends on the deformation and the electric
intensity of the bulk material. Similarly, surface electric displace-
ments are composed of two components from the residual surface
electric displacement and the surface elasticity, respectively. So far,
the surface elasticity theory has been widely adopted to investigate
the mechanics properties and behaviors of nanostructured
materials, as reviewed by Wang et al. [10].
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As far as wave propagation problems are concerned, Wang and
co-workers applied the surface elasticity theory to examine the
surface effects on the propagation of plane waves diffracted by a
single spherical or cylindrical nanoinclusion [11,12] and an array
of nanosized cylindrical holes [13] in an infinite elastic medium.
Fang et al. [14] studied the scattering of plane compressional
waves by two interacting nanosized cylindrical inhomogeneities
and discussed the effect of interfacial properties on dynamic stress
concentration. Combining the surface elasticity theory with differ-
ent approaches, surface effects on band structures of two dimen-
sional phononic crystals with nanosized holes and inclusions are
analyzed in the Refs. [15–17]. For piezoelectric nanomaterials,
the surface effects on the diffraction of transverse shear waves
by one nanofiber [18] and two interacting nanofibers [19] in
piezoelectric matrices have been investigated. Analysis on the dis-
persion of plane compressional waves by a nanocylinder in an infi-
nite piezoelectric medium is carried out by Zhang et al. [20]. In
terms of the surface elasticity theory, Zhang and Chen [21] investi-
gated the propagation of anti-plane shear waves in a piezoelectric
nanoplate. Besides the surface elasticity theory, Chen [22] estab-
lished a surface piezoelectricity theory based on a thin layer model
and the state-space formalism. It is then applied to explore the
impact of surface effects on the propagations of Bleustein–Gulyaev
(B–G) wave in a piezoelectric half-space and transverse shear
waves in a nanosized piezoelectric cylinder [23]. To date, research
efforts on the elastic waves propagation in piezoelectric structures
are still very limited once surface effects are considered.

As piezoelectric nanofilms which are nanosized in thickness and
possess piezoelectric properties are often attached to a substrate of
different physical properties in performances, surface effects on
the propagation of elastic waves in the layered structures consist-
ing of a piezoelectric nanofilm and a half-space elastic substrate
are vital for the functions of piezoelectric nanofilms. Transverse
shear waves in the above structures are referred as Love waves
and have been extensively studied when surface effects are
neglected [24–32]. To the author’s knowledge, however, research
on the Love waves propagation with surface effects has not yet
reported in literature. By adopting the surface elasticity theory
and the electrically-shorted conditions, dispersion of Love waves
is investigated in this paper with the consideration of surface
effects. This work aims to reveal the new features in the frequency
dispersion of Love waves induced by surface effects. The effects of
the film thickness and the surface constants are quantitatively
examined for the dispersion relations of the first three modes.

2. Formulation of the problem

Consider a piezoelectric wave-guide structure in which a
piezoelectric film of thickness h covers on a semi-infinite elastic

substrate, as shown in Fig. 1. Referring to the Cartesian coordinate
system (x, y, z), polarization direction of the piezoelectric film is
aligned with the z direction and Love wave is incident along the
x direction. The elastic substrate is homogeneous and isotropic.
Surface effects exist on both the free surface of the piezoelectric
film (denoted as the surface) and its interface with the substrate
(denoted as the interface). Apparently, the surface effects on the
surface and the interface are usually different because the atomic
structures near the surface and the interface are not the same. Fur-
thermore, the electric field of the piezoelectric film is assumed to
be electrically-shorted, i.e., the electric potentials on the surface
and the interface are zero.

According to the surface elasticity theory, surface effects only
affect the boundary conditions of the bulk material on the sur-
face/interface while the geometric equations, equilibrium equa-
tions and constitutive equations of the bulk materials keep the
same as in the classical elasticity theory. For the problem of Love
waves propagation, therefore, the displacement and the electric
fields of the piezoelectric film and the elastic substrate have the
following forms

ux ¼ uy ¼ 0; uz ¼ wðx; y; tÞ; / ¼ /ðx; y; tÞ;
ue
x ¼ ue

y ¼ 0; ue
z ¼ weðx; y; tÞ; ð1Þ

where superscript ‘‘e” stands for the quantities related to the elastic
substrate. uiði ¼ x; y; zÞ and / are the displacements and the electric
potential, respectively. Accordingly, the constitutive equations of
the piezoelectric layer and the substrate can be deduced as

rza ¼ c44w;a þ e15/;a; Da ¼ e15w;a � k11/;a; ð2Þ

re
za ¼ ce44w

e
;a; ð3Þ

where rza and Daða ¼ x; yÞ are the stresses and the electric displace-
ments. c44, e15 and k11 denote the elastic, the piezoelectric and the
dielectric coefficients, respectively. Moreover, the equilibrium
equations read

c44r2wþ e15r2/ ¼ q
@2w
@t2

; e15r2w ¼ k11r2/; ð4Þ

ce44r2we ¼ qe @
2we

@t2
; ð5Þ

wherer2 ¼ @2

@x2 þ @2

@y2 is the two-dimensional Laplace operator. q and

qe represent the mass densities of the piezoelectric film and the
elastic substrate. The general solutions of Eqs. (4) and (5) can be
written as

wðyÞ ¼ ðAekk1y þ Be�kk1yÞeiðkx�xtÞ;

/ðyÞ ¼ e15
j11

ðAekk1y þ Be�kk1yÞ þ ðCeky þ De�kyÞ
� �

eiðkx�xtÞ; ð6Þ

weðyÞ ¼ Eekk2yeiðkx�xtÞ; ð7Þ
where A, B, C, D and E are the unknown constants to be determined.

k and x are the wavenumber and the frequency. k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2p

c2F

r
and

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2p

c2HS

r
with cp ¼ x

k , c
2
F ¼ �c

q ; �c ¼ c44 þ e15
k11

� �
and c2HS ¼

ce44
qe being

the phase velocity of Love waves, the velocities of the bulk trans-
verse shear waves in the piezoelectric film and elastic half-space.

Boundary conditions on the surface and the interface are
required to solve the unknown constants in (6) and (7). Due to sur-
face effects, however, stresses and electric displacements are no
longer continuous cross a surface/interface while the continuities
of displacement and electric potential maintain. In terms of the sur-
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Fig. 1. Configuration of a piezoelectric film bonded with a semi-infinite elastic
substrate.
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