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a b s t r a c t

Acoustic emissions are elastic waves accompanying damage processes and are therefore used for moni-
toring the health state of structures. Most of the traditional acoustic emission techniques use a trilater-
ation approach requiring at least three sensors on a 2D domain in order to localize sources of acoustic
emission events. In this paper, we present a new approach which requires only a single sensor to identify
and localize the source of acoustic emissions in a finite plate. The method proposed makes use of the time
reversal principle and the dispersive nature of the flexural wave mode in a suitable frequency band.
The signal shape of the transverse velocity response contains information about the propagated paths
of the incoming elastic waves. This information is made accessible by a numerical time reversal simula-
tion. The effect of dispersion is reversed and the original shape of the flexural wave is restored at the
origin of the acoustic emission. The time reversal process is analyzed first for an infinite Mindlin plate,
then by a 3D FEM simulation which in combination results in a novel acoustic emission localization
process. The process is experimentally verified for different aluminum plates for artificially generated
acoustic emissions (Hsu–Nielsen source). Good and reliable localization was achieved for a homogeneous
quadratic aluminum plate with only one measurement.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many damage mechanisms involve some sort of sudden stress
release or stress redistribution in the loaded structure. The tran-
sient nature of these mechanisms leads to elastic waves propagat-
ing away from the damage zone. These waves traditionally are
called acoustic emissions (AE) and are used for monitoring the
structural health of a mechanical part. In contrast to ultrasonic
inspection, AE monitoring is a passive inspection technique which
does not require an interrogating wave in order to scan the struc-
ture. AE waves are generated by the damage mechanism itself and
the method is therefore ideal for monitoring the structural health
of mechanical parts in operation. However, only active damage
processes are detectable and the detection of such damage zones
depends on the type of loading.

Locating an AE event is traditionally done by trilateration,
which requires arrival time identification of a wave at different
sensors, very similar to the localization of the epicenter of an
earthquake from arrival times. More recently, researchers devel-
oped alternative techniques for localization of AE in mechanical
structures. A thorough review of the latest AE localization

techniques is given by Kundu [1]. He found two main research
directions, one striving for minimal a priori knowledge require-
ments, the other for using as few sensors as possible. Beam-
forming and optimization algorithms allow robust localization
results using at least four sensors. Often, AE are to be detected in
structural components and hence the AE waves are multimode
and propagate dispersively. Therefore, considering the modal nat-
ure of these AE wave problems, fewer sensors suffice to localize AE
events and these techniques are known as modal acoustic emission
(MAE), see e.g. [2–4]. The benefit of using fewer transducers are of
either economical nature or offer monitoring capabilities in situa-
tions, where only limited access is possible. In the case of plate
structures, MAE typically requires the identification of arrival
times of extensional and flexural wave modes. Since the two
modes propagate with different group velocities, the propagated
distance of the waves can be calculated with the knowledge of
the respective velocities. Three main concerns come with the
application of MAE. (1) First of all, the measurement signal is often
composed of many wave reflections and of multiple AE’s. As a
result, identification and separation of flexural and extensional
wave modes from the same event is not straightforward, especially
when using only one transducer [4]. Methods to decouple incident
and reflected waves in plates are reported in [5]. (2) Errors in arri-
val time determination are a main source of the localization uncer-
tainty. Accurate arrival time picking is further complicated by
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noise in the signal. (3) The MAE method implies that the measured
waves propagated along direct paths from AE source to sensor. Non
uniformities or interruptions in the wave paths are not compen-
sated in the calculation [1].

This paper discusses an alternative method closely related to
MAE. As in MAE, the suggested method utilizes the dispersive
and multi-modal nature of waves propagating in plate-like struc-
tures. However, instead of analyzing arrival times of different wave
modes, analyzing the distorting effect of dispersion on the wave
signal builds the basis for locating AE events. By doing so, many
of the previously mentioned issues can be avoided while requiring
even fewer sensors in the process.

As a dispersive wave propagates, the pulse shape changes. The
overall amplitude of the pulse envelope decreases and the duration
of the pulse increases because the frequency components which
form the pulse travel at different velocities. After having recorded
the pulse shape of waves generated by an AE event at a given loca-
tion, a time reversal (TR) simulation is set up, in which the mea-
sured signal is reversed in time and used to virtually propagate
back the waves measured in the experiment. Thereby, as the waves
propagate back in the virtual structure, dispersion is reversed and
the wave achieves maximal amplitude at its origin, i.e. the AE loca-
tion. This procedure has been discussed for 1D structures in guided
wave applications [6] and for 1D structures in AE applications [7].
A key element in these publications was to only model flexural
wave motion in the TR simulation even if the signal contains con-
tributions from other modes as well. This has the effect that, from
all the modes in the signal, only the one whose kinematics are sup-
ported in the simulation will recover its original shape. Other
modes and vibration sources will also be treated as flexural waves
in the TR simulation and therefore immediately disperse and fade
out because the dispersion characteristics in the experiment and in
the simulation do not match for these non-flexural waves. This
feature massively increases the method’s robustness in low
signal-to-noise scenarios and is especially suited for AE tests where
the number and distribution of modes in the signal is unknown. In
regard of this approach, it will be sufficient to investigate the TR
process for flexural waves only, knowing that other modes will
not disturb the AE localization process.

Furthermore, the measured signal will be analyzed in a speci-
fied frequency band only. Constraints for the chosen frequency
band come from two sides. On the one hand, the signal must
contain flexural waves in a frequency range where dispersion is
present. On the other hand, the implemented finite element model
is reasonably accurate for flexural waves only up to 50 kHz. We
therefore band-limit the AE signal to frequencies between 5 kHz
and 50 kHz.

2. Axisymmetric time reversal process for flexural waves in
plates

In this paper, we define the TR process as follows: Starting from
a transverse displacement disturbancew0 at location r0, the distur-
bance propagates through the material as a number of wave
modes, one of them being the flexural wave mode or in the termi-
nology of Lamb waves the A0 mode. At another location rm the
resulting transverse displacement wm is recorded, reversed in time
and used to re-excite waves in the plate such that the transverse
displacement at rm has the form wTR

m ðtÞ ¼ wmðT � tÞ, where T is an
arbitrary time constant. Part of this second disturbance propagates
to the original location r0, resulting in a displacement responsewTR

0 .
If the TR process succeeds, wTR

0 is similar to w0. This process is now
investigated for flexural waves, using Mindlin plate theory [8]
which represents a strength of material theory which approxi-
mates the first two anti-symmetrical Lambmodes A0 and A1. While

other modes also contribute to the transverse response, we assume
that the signal has been band-limited such that only flexural and
shear-thickness wave modes contribute to the transverse response,
higher order modes and longitudinal modes are ignored in line
with the reasoning given at the end of the introduction section.

The three wavenumbers for Mindlin plate theory are given by:
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being the longitudinal plate velocity. The other

parameters are: non dimensional factor j, here j ¼
ffiffiffiffi
p2

12

q
, the plate

thickness 2h, the circular frequency x, Poisson’s ratio m, Young’s
modulus E, density q. The test specimen used in theory and exper-
iment is a 2 mm thick aluminum plate and Mindlin plate theory
predicts a frequency spectrum according to Fig. 1.

2.1. Infinite plate

The transverse axisymmetric response for an infinite plate sub-
jected to a point force can be written as a flexural wave and a shear
boundary layer, see Fromme [9]:

wðr; tÞ ¼
X1
n¼0

A0nH
2
0ðk1nrÞ þ B0nH

1
0ð�k2nrÞ

h i
eixnt ð4Þ

Below the cut-off frequency of the k2 mode, the term H1
0ð�k2rÞ

is associated with an evanescent wave. The Hankel functions of the
first and second kind are denoted as H1

0 and H2
0 respectively.
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Fig. 1. Frequency spectrum showing the wavenumbers k1; k2 and k3 as a function
of frequency according to Mindlin plate theory. The plate thickness is 2 mm and is
made of T6 AW-6082 aluminum. The first mode (k1) will be referred to as flexural
wave, the second mode (k2) as thickness-shear mode with cut-off frequency
0.79 MHz. The third mode (k3) is referred to as twisting wave and has a cut-off
frequency of 1.58 MHz.
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