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a b s t r a c t

Shear wave propagation in tissue generated by the radiation force is usually modeled by either a lossless
or a classical viscoelastic equation. However, experimental data shows power law behavior which is not
consistent with those approaches. It is well known that fractional derivatives results in power laws,
therefore a time fractional wave equation, the Caputo equation, which can be derived from the fractional
Kelvin–Voigt stress and strain relation is tested. This equation is solved using the finite difference method
with experimental parameters obtained from the existing literature. The equation is characterized by a
fractional order which is also the power law exponent of the frequency dependent shear modulus. It is
shown that for fractional order between 0 and 1, the equation gives smaller shear modulus than the
classical model. The opposite situation applies for fractional order greater than 1. The numerical
simulation also shows that the shear wave velocity method is only reliable for small losses. In our case,
this is only for a small fractional order. Based on the published values of fractional order from other
studies, there is therefore a chance for biased estimation of the shear modulus.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Shear wave elasticity imaging (SWEI) has become an important
tool for characterizing tissue properties. It is done by inducing a
shear wave through the radiation force of a focused ultrasonic
beam [1]. Understanding shear wave propagation and the material
response of human tissue can provide more accurate information
for medical diagnosis, device design and treatment planning. One
key aspect of this is to find equations that accurately model wave
attenuation and dispersion.

However, there are some challenges for finding accurate
equations for dynamic processes that occur in biological tissues.
For example, it is well known that attenuation of both shear and
compressional waves follows a power law [2–4]

akðxÞ ¼ a0x y; ð1Þ
where the subscript k denotes that akðxÞ is the imaginary part of
the wave number k;a0 is the absorption coefficient,x is the angular
frequency, and y is the power law exponent. The classical
integer order wave equations can only model attenuation with
y ¼ 0;2. Therefore attenuation with y– 0;2 is called anomalous
attenuation [5].

In some cases, the stress–strain relationship is nonlinear [6].
These studies require large relative tissue deformations in the

order of 20%. Here we assume very small tissue deformations so
that the medium’s response is linear.

There is experimental data that shows the value of the power
law y for shear wave attenuation. Holm and Sinkus analyzed data
published by Asbach et al. and found y � 0:73 for shear wave prop-
agation in liver using MR elastography [3,7]. Data for malignant
lesions in breast shows y � 0:13 [8]. In cell rheology, Fabry et al.
[9] suggested y � 1:2 in the frequency range from 0.01 to 10 Hz.
Thus there are plenty of interesting experimental results in the lit-
erature, and this paper therefore does not report any new such
results.

These values of the power law are well suited for modeling with
fractional calculus. It is a powerful tool for describing such attenu-
ation in a parsimonious way, i.e. with only a few parameters. Up to
now, many researchers have used fractional wave equations to
model mainly compressional waves in medical ultrasound. For
instance, Treeby and Cox [10] modeled power law absorption
and dispersion for propagation in photoacoustic imaging using
the fractional Laplacian operator. Caputo et al. [11] simulated
waves in a biological medium based on the Kelvin–Voigt fractional
derivative stress–strain relation. Chen et al. [12] modeled compres-
sional wave propagation in breast using the modified Szabo’s
equation which has a positive fractional derivative lossy operator.

Compared with the case for compressional waves, not so many
have tried to model shear waves in elastography with arbitrary
power laws. But Klatt et al. [13] fitted the fractional Zener model
to data for brain and liver viscoelasticity. A unifying wave equation

http://dx.doi.org/10.1016/j.ultras.2015.09.003
0041-624X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: 71574252@qq.com (W. Zhang), sverre@ifi.uio.no (S. Holm).

Ultrasonics 64 (2016) 170–176

Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/ locate/ul t ras

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultras.2015.09.003&domain=pdf
http://dx.doi.org/10.1016/j.ultras.2015.09.003
mailto:71574252@qq.com
mailto:sverre@ifi.uio.no
http://dx.doi.org/10.1016/j.ultras.2015.09.003
http://www.sciencedirect.com/science/journal/0041624X
http://www.elsevier.com/locate/ultras


for shear and compressional was discussed by Holm and Sinkus [3].
Likewise, Holm and Näsholm [4] compared several fractional wave
equations and discussed the conditions under which equations
were suitable for compressional waves in medical ultrasound and
for shear elastography respectively.

The usual way of simulating shear waves in elastography is
either to assume a lossless medium [14] or to assume a viscous
medium [15]. However this does not capture some of the
frequency dependency of published measurement over the last
decades. The purpose of this paper is therefore to build on
published data on frequency dependency, and use those values in
the fractional wave equations in order to study shear wave propa-
gation and find if a variation in the power law characteristics can
lead to a bias in the estimation of e.g. the shear modulus.

In this paper, we first introduce the Caputo equation which has
previously been found to be a useful model in elastography [4], and
analyze the dispersion relation. Then we give a brief introduction
to shear wave elasticity imaging and find representative values
for the power law parameter that different studies have come up
with. In the following part, we present the numerical scheme for
simulating fractional wave equations, and perform a simulation
study using representative values for the fractional order. We then
simulate both the peak displacement method and the time-to-peak
method and analyze the results.

2. Lossy wave equations

A lossy wave equation can be written as

r2u� 1
c2t

@2u
@t2

þ Lu ¼ 0; ð2Þ

where ct is the propagation velocity for the transverse wave, i.e. the
shear wave, u is the displacement, and L is the loss operator. Differ-
ent loss operators influence attenuation and dispersion properties,
and some of them are also only valid over a restricted frequency
range (usually only low frequencies). For example, Lu ¼ @u=@t gives
the power law exponent y ¼ 0. Another case is the Stokes wave
equation, which has Lu ¼ @ðr2uÞ=@t and y ¼ 2 for low frequencies.

2.1. Fractional wave equation

In order to model power law behavior, we build on the fact that
the Fourier transform of the fractional derivative of a function, f ðtÞ,
generalizes the result for an integer order derivative and is
ðixÞaFðxÞ, where FðxÞ is the Fourier transform of f ðtÞ. The frac-
tional derivative is introduced via a loss operator which can be
found by starting with a constitutive equation with a fractional
relation between stress T and strain S [3]

T ¼ lSþ g
@aS
@ta

; ð3Þ

where l is the stiffness, g is the viscosity, and a is the fractional
order. The range for a is between 0 and 2, but mostly it is less than
1. The classical Kelvin–Voigt model is a special case of Eq. (3) if we
let a ¼ 1. The mechanical representation of the fractional
Kelvin–Voigt model is shown in Fig. 1, where the spring represents
the elastic part, parameterized by the stiffness l, and the dashpot
(fractional damper) is parameterized by the viscosity g and the
fractional order a. This particular mechanical model and its
generalization in the fractional Zener model have turned out to be
surprisingly accurate for a wide range of materials [16].

There are several ways to define the fractional derivative. Here
we use the approach of Caputo because it has physically
interpretable initial conditions. Other definitions can be found in
[17]. The Caputo fractional derivative is

@auðtÞ
@ta

¼ 1
Cðn�aÞ

Z t

a
ðt� nÞn�a�1 d

nuðnÞ
dnn

dn; n� 1< a< n: ð4Þ

Fractional calculus, allowing integrals and derivatives of any real
order, is the generalization of classical calculus [17]. Fractional
calculus deals with integro-differential operators and equations
where the integrals are convolutions with power law type kernels.
An important feature of fractional differential operator is its
non-locality. In the context of Eq. (3), this means that it describes
a damper with a power law memory in time.

To derive the fractional equation, we also need the relation
between strain, S, and displacement, u [2]

S ¼ @u
@x

; ð5Þ

and the principle of conservation of momentum

q
@2u
@t2

¼ @T
@x

; ð6Þ

where q is the density. Combining Eqs. (3), (5) and (6), and
extrapolating from 1-D to 3-D, we get

r2u� 1
c2t

@2u
@t2

þ sa @a

@ta
r2u ¼ 0; ð7Þ

where the characteristic relaxation time of the medium is given by
sa ¼ g=l, and the shear wave speed is related to the elasticity by

l ¼ qc2t : ð8Þ
In a lossless medium ct is the phase velocity which is constant with
frequency, while in a lossy medium, ct is the asymptotic value of the
phase velocity at zero frequency. For the convenience of the follow-
ing numerical simulation, we rewrite Eq. (7) by multiplying with c2t

@2u
@t2

� c2tr2u� g
q

@a

@ta
ðr2uÞ ¼ 0; ð9Þ

where g=q ¼ c2t sa.
It should be noted Eq. (7) was first derived by Caputo in [18] and

therefore we call it the Caputo wave equation here. Holm and
Sinkus [3] showed that Eq. (7) can be used both for shear waves
and compressional waves. This was further developed in [4] where
it was shown that it is a simplified version of a fractional Zener
wave equation. The Caputo wave equation is valid for reasonable
values of the product xs > 1 as long as it is not too large. This is
satisfied here where the maximum value of the product will turn
out to be 28.7 (Section 3). This paper is restricted to linear models

spring dashpot

,

Fig. 1. The mechanical representation of the fractional Kelvin–Voigt model
consisting of a Hookean spring in parallel with a fractional derivative dashpot.
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