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a b s t r a c t

Sparse deconvolution is widely used in the field of non-destructive testing (NDT) for improving the tem-
poral resolution. Generally, the reference signals involved in sparse deconvolution are measured from the
reflection echoes of standard plane block, which cannot accurately describe the acoustic properties at dif-
ferent spatial positions. Therefore, the performance of sparse deconvolution will deteriorate, due to the
deviations in reference signals. Meanwhile, it is inconvenient for automatic ultrasonic NDT using manual
measurement of reference signals. To overcome these disadvantages, a modified sparse deconvolution
based on automatic estimation of reference signals is proposed in this paper. By estimating the reference
signals, the deviations would be alleviated and the accuracy of sparse deconvolution is therefore
improved. Based on the automatic estimation of reference signals, regional sparse deconvolution is
achievable by decomposing the whole B-scan image into small regions of interest (ROI), and the image
dimensionality is significantly reduced. Since the computation time of proposed method has a power
dependence on the signal length, the computation efficiency is therefore improved significantly with this
strategy. The performance of proposed method is demonstrated using immersion measurement of scat-
tering targets and steel block with side-drilled holes. The results verify that the proposed method is able
to maintain the vertical resolution enhancement and noise-suppression capabilities in different
scenarios.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ultrasound imaging plays a significant role in ultrasonic NDT,
profiting from the abundant and quantitative information of the
objects under inspection [1]. The low resolution of ultrasonic imag-
ing techniques restricts their practical performance in industry
despite the promising perspectives they suggest in accurately
inspecting. For this reason, the researches on enhancing the image
resolutions attract great interest in ultrasonic community [2,3].

In the case of ultrasonic B-scan images, which are composed of
reflection echoes acquired from different points along the horizon-
tal axis, the lateral resolution can be significantly improved by
using the synthetic aperture focusing technique (SAFT) and many
algorithms have been developed to implement such technique
[4,5]. Generally, the vertical resolution of ultrasonic B-scan images
is enhanced by deconvolution methods, which include two main
categories: the non-blind and the blind deconvolution. Although

the blind deconvolution method has successfully bolstered the
medical applications [6,7], the non-blind deconvolution is more
widespread in the industrial field, due to its advantages in terms
of robustness and computation efficiency. To solve non-blind
deconvolution, a number of algorithms have been employed, such
as Wiener filter [8], matching pursuit (MP) [9–11], basis pursuit
(BP) [12,13] and others [14,15]. In many practical non-
destructive testing applications, the defects in an object are gener-
ally finite in number and their distribution can be assumed sparse.
Therefore, sparse non-blind deconvolution could be applied [16].
For simplicity, sparse non-blind deconvolution is referred as sparse
deconvolution in the following content. Benefiting from the spar-
sity of ‘1 norm regularization, sparse deconvolution with BP algo-
rithm has been widely applied for NDT [17–19]. Recently, it has
been implemented through the separable approximation (SpaRSA)
algorithm [20], leading to a simultaneous improvement of lateral
and temporal resolution [21].

However, the convergence and accuracy of sparse deconvolu-
tion heavily depend on the reference signals, which are commonly
measured from the reflection echoes of standard plane block. The
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measured reference signals are usually approximated, since they
are not taking into account the acoustic properties, which are vary-
ing with spatial positions [22,23]. Moreover, the reference signals
must be manually remeasured when the inspection object is chan-
ged, thus the development of automatic ultrasonic NDT is severely
hindered. It is therefore highly desired to automatically acquire the
reference signal of higher accuracy.

In this paper, a sparse deconvolution method based on auto-
matic estimation of reference signals is proposed. Firstly, the ultra-
sonic B-scan image is decomposed into A-scan signals, which are
the time histories of received ultrasonic echoes. Then, Fourier
transformation is applied to the A-scan signals to generate ampli-
tude spectra, and the estimated reference signals are derived from
the expectation values of the amplitude spectra. The SpaRSA algo-
rithm with soft thresholding and gradient descent is then applied
to acquire the sparse results of A-scan signals column by column.
Finally, the new ultrasonic B-scan image is reconstructed from
those sparse results.

Based on the assumption of sparse distribution of defects in
industrial NDT application and automatic estimation of reference
signals, a regional strategy could be implemented to suppress the
inaccuracy of spatially varied reference signals. The ultrasonic
B-scan images are firstly decomposed into smaller binary ones
and the boundaries are traced out. The regions of interest (ROI)
are then selected by the thresholds of area. Finally, the reference
signal matrix of each ROI is estimated, and the SpaRSA algorithm
is applied to realize the regional and eventually global sparse
deconvolution. Moreover, the image dimensionality is significantly
reduced with this strategy, and the computation efficiency is there-
fore improved.

The rest of the paper is organized as follows. The theory of
sparse deconvolution based on automatic estimation of reference
signals is presented in Section 2, including the model of sparse
deconvolution and its solution, the estimation of reference signal
matrix and the realization of regional sparse deconvolution. In Sec-
tion 3, the experiments of ultrasonic B-scan imaging are carried out
to demonstrate the performance of proposed method. The conclu-
sion and discussion are in Section 4.

2. Theory

2.1. Sparse deconvolution model and its conventional solution

Before deriving the sparse deconvolution based on automatic
estimation of reference signals, the sparse deconvolution model
and its conventional solution are briefly introduced. According to
the model from the first-order Born approximation of the wave
equation, the A-scan signal of reflection echo can be expressed
by a convolution of the reference signal and the reflectivity func-
tion as follows

y ¼ x � hþ n ð1Þ

where y ¼ ½yð0Þ; yð1Þ; . . . ; yðM � 1Þ�T , x ¼ ½xð0Þ; xð1Þ; . . . ; xðM � 1Þ�T ,
h ¼ ½hð0Þ;hð1Þ; . . . ;hðM � 1Þ�T and n ¼ ½nð0Þ;nð1Þ; . . . ;nðM � 1Þ�T
denote the A-scan signal of reflection echo, reference signal, reflec-
tivity function and noise, respectively. After convolution of x � h, the
reflection echo is shifted, and the other elements in the array from
M to 2M�1 are zero. Thus, the firstM elements of convolution result
are truncated in Eq. (1).

In the frequency domain, the Fourier amplitude spectrum of ref-
erence signal can be calculated by [24]

jjXjj ¼ jjFxjj; ð2Þ
where X is the Fourier transform of x, jj:jj denotes the magnitude of
complex number, and F is Fourier matrix, which is given as

F ¼
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In general, a vertical shift of deconvolved image may appear
after deconvolution. To avoid this shift, phase spectrum of x is
required to be zero. With this assumption the reference signal
matrix can be written as

C ¼ 1
M

FydiagðjjXjjÞF; ð3Þ

where diag ðjjXjjÞ is a diagonal matrix which diagonal contains the
elements of the vector jjXjj and y represents a conjugate transpose.
According to the convolution theorem, the multiplication of matrix
C and vector h is equal to the convolution of x and h in time domain.
Thus, Eq. (1) can be rewritten as

y ¼ Chþ n: ð4Þ
Then, the objective function can be formulated as follows

min
h

jjy � Chjj22; ð5Þ

where jj:jj2 denotes the Euclidean norm.
The sparse deconvolution of A-scan signal without noise can be

solved through Eq. (5) when x and y are known. However, the opti-
mization problem of Eq. (5) is ill-posed when the noise is consid-
ered, and its solution will be not sparse. It is therefore necessary
to adopt ‘1 regularization [25] to regularize Eq. (5) as

min
h

jjy � Chjj22 þ ljjhjj1; ð6Þ

where jjhjj1 represents the ‘1 regularization and l is the regulariza-
tion parameter, which introduces a trade-off between the least-
square fit and the penalty from adjusting the sparsity of h. When
l become larger, the solution will be sparser, and vice versa. Gener-
ally, l is set to 0.2, for that the solution of Eq. (6) would be distorted
if l is too large.

After Eq. (6) is established, the sparse deconvolution of A-scan
signal becomes a nonlinear optimization problem. Due to the spe-
cial convexity of ‘1 regularization, the classical nonlinear optimiza-
tion algorithms which require Hessian and Gradient matrix as the
basis, are difficult to solve. Hence, the SpaRSA algorithm is adopted
to solve this problem and the detailed procedures are shown in
Fig. 1.

There are three basic steps in the SpaRSA algorithm, which are
gradient descent, soft thresholding and variable step-length strat-
egy. In the first step, the gradient descent function G is defined
as follows

zk ¼ GðhkÞ ¼ hk � CTðCh� yÞ=ak; ð7Þ
where k is the number of iterations, ak is the step-length factor, z is
the intermediate variable and T is the transpose symbol.

Then, the soft thresholding is defined as

Jðz; kÞ ¼ signðzÞ �maxfjzj � k;0g; ð8Þ
where k is the soft threshold and signð:Þ represents the sign func-
tion. When k is set as l=ak, the iteration of h can be described as

hkþ1 ¼ Jðzk;l=akÞ ¼ signðzkÞ �maxfjzkj � l=ak;0g ð9Þ
Due to the weak correlation between noise and reference signal

matrix, the energy distribution of noise will be scattered after it is
mapped on the sparse basis. Therefore, the soft thresholding is able
to denoise the signal.

To implement the variable step-length strategy, the range is
firstly determined by the Barzilai–Borwein method [26] and the
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