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The paper presents a Compressed Sensing technique for the reconstruction of guided wavefields.
Structural inspections based on the analysis of guided wavefields have proven to be effective at detecting
and characterizing damage. However, wavefield detection is often a time consuming process, which lim-
its practicality. The proposed reconstruction technique estimates the location of sources and structural
features interacting with the waves from a set of sparse measurements. Such features include damage,
described as a scattering source. The wavefield is reconstructed by employing information on the disper-
sion properties of the medium under consideration. The procedure is illustrated through a one-
dimensional analytical example, and subsequently applied to the reconstruction of an experimental
wavefield in a composite panel with an artificial delamination. The results confirm the ability of the tech-
nique to identify the defect, while reconstructing the wavefield with good accuracy using a significantly
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1. Introduction

Lamb wave-based inspection continues to draw significant
attention within the Non-Destructive Evaluation (NDE) and Struc-
tural Health Monitoring (SHM) communities [1]. A first group of
techniques employs arrays of transducers mounted on the struc-
ture at a predetermined set of points [2-6]. These techniques gen-
erally provide a fast estimate of the location of defects such as
holes, cracks, or delaminations, but often provide limited informa-
tion on their shape, size and thickness-wise location. A second
group of techniques relies on wavefield detection and analysis
[7-10]. In this context, a wavefield denotes a series of images
describing the time or frequency evolution of a propagating wave.
Wavefield techniques provide a wealth of information that can
effectively locate as well as quantify damage [7,11]. However,
wavefield detection is a timely process due the common need for
multiple averages at each location to mitigate potentially low
signal-to-noise ratios, and the large number of measurements
required to avoid spatial aliasing and resolve the desired informa-
tion. Therefore, there is a recognized need to reduce acquisition
time by reducing the number of acquisitions. This is the focus of
recent papers where the use of dedicated equipment is explored
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to speed up acquisitions by increasing the number of measure-
ments per unit of time. Examples include the use of a multi-
point Laser Doppler Vibrometer (LDV) [12,13], and of a galvanome-
ter mirror system in conjunction with a high amplitude single fre-
quency piezoelectric transducer [14]. This paper contributes to this
objective by exploring a process that reduces the number of
required measurements, possibly below the limits imposed by
Nyquist sampling theorem. The proposed process is based on the
hypothesis that the time response recorded at one point of the sur-
face of a plate structure can be employed to infer the response at
any other point assuming prior knowledge of dispersion relations,
plate geometry, and location of the excitation. When this knowl-
edge is incomplete due to the presence of defects for example, this
extrapolation is not straightforward and tools such as Compressed
Sensing [15,16] must be used. Compressed Sensing (CS) is a math-
ematical theory commonly used as a reconstruction process for
data sampled below the Nyquist frequency. Compressed Sensing
deals with “sparse” or “compressible” signals randomly sampled
within the domain of interest, either time or space. A “sparse” sig-
nal is here intended as a signal with only a few nonzero coeffi-
cients, whereas a signal is “compressible” if there exist a basis in
which the signal has a sparse representation. Applications of CS
include image processing [17] and magnetic resonance imaging
[18]. Prior applications of CS to the reduction of wavefield mea-
surements can be found in [19], where, in contrast to the present
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paper, no prior knowledge of the physical properties of the med-
ium such as its dispersion relations is assumed. A more recent
paper from the same group [20] presents a wavefield reconstruc-
tion technique similar to the one presented herein, but using ana-
lytical dictionaries such as wavelets, Fourier functions or Gabor
atoms as bases for wavefield reconstruction. Another series of
papers develops a technique called sparse “wavenumber analysis”
[21,22] for reconstructing the dispersion relations of a plate
through sparse measurements. This technique has also been
recently applied to pristine wavefield reconstruction [23]. The pre-
sent paper presents a process to reconstruct a wavefield on an
oversampled grid from few measurements. The paper differenti-
ates itself from prior work by performing the reconstruction upon
locating the non-pristine material points interacting with the
wavefronts. The estimated dispersion relations of the medium
are then used to extrapolate the wavefield onto a grid of points
of arbitrary size and density. The estimated dispersion relations
form the basis that sparsifies the wavefield, and allow wavefield
reconstruction. Furthermore, this basis locates all features within
the plate that interact or affect the wavefield. These include
sources or scatterers such as damage. The number of measure-
ments required for the reconstruction is significantly smaller than
the number of measurements required by the common sampling
requirements.

The paper is organized as follows. Following this introduction,
Section 2 provides a summary of the CS formulation necessary
for the development of the process. Section 3 contains the details
of the matrix formulation and of the wavefield reconstruction pro-
cess. Next, Section 4 illustrates the application of the reconstruc-
tion process to a one-dimensional (1D) analytically generated
wavefield with a reflector, and presents results on a two-
dimensional (2D) experimental wavefield on a composite panel
containing an artificial delamination. Finally, Section 5 summarizes
the main findings of the work and provides recommendation for
future investigations.

2. Overview of Compressed Sensing

The fundamental mathematical result of Compressed Sensing
(CS) states that if a signal x ¢ R"*! is K sparse, i.e. only K compo-
nents of x are non zero, it can be exactly reconstructed with an
overwhelming probability from few linear measurements ran-
domly chosen [15,16]. The same result holds for compressible sig-
nals, which are signals well approximated by a small number of
coefficients in a given basis. The basis in which a compressible sig-
nal is sparse is called a “sparsifying basis”. In here and in the
remainder of the paper, bold lower case letters denote vectors,
while capitalized bold letters will be use for matrices.

The general under-sampling problem can be expressed as:

y==ox (1)

where y € RM*! is the measurement vector, ® € R®*N is the down-
sampling measurement matrix and x € RN*! is the unknown vector
to reconstruct. It is assumed that M < N, so that ® is a “short and
large” type of matrix. In other words, the number of linear measure-
ments is smaller than the number of unknown variables in x.

For a compressible signal, the problem can be rewritten through
a change of basis as follows:

y = ®Ba = Ax (2)
where a € R™! is the sparse representation of x in the basis defined

by B c RV, ie. A= ®B, where A c R™*" is the denoted as the
“sensing matrix”. Thus:

X = Ba

with P denoting the number of vectors forming the basis B. Eq. (2)
defines a CS problem. The objective is the estimation of the basis
coefficients & that provide the best reconstruction of the unknown
set of physical variables x represented through B. Inputs to the
problem are the measurements y. Several algorithms have been
proposed for the solution of CS problems as in Eq. (2). For example,
greedy algorithms such as the Orthogonal Matching Pursuit is pro-
posed in [24,25]. As an alternative, [1-minimization algorithms such
as Basis Pursuit have shown suitability for the reconstruction of
noisy sparse signals [26,27]. Finally, Total Variation (TV) algorithms
have been employed when the gradient of the signal to reconstruct
is sparse [28,29]. An I1-minimizer is selected for the solution of the
CS problem in this paper due to its robustness in the presence of
measurement noise. The application of [1-minimizers requires that
the sensing matrix A verifies the Restricted Isometry Property (RIP)
with a RIP constant §; smaller than unity [30]. This constant is
defined for a matrix A by the smallest scalar verifying the following
inequality for all y and for all sub-matrices of A, denoted A;:

(1-30)|yll5 < IAYI5 < (1+0)lyll3

The & constant is a characterization of the nearly orthogonal
matrices operating on sparse vectors. The case J; ~ 0 corresponds
to a nearly orthonormal matrix, while §; ~ 1 indicates that some
of the vectors forming the matrix A are nearly identical or
redundant. This requirement guarantees that the CS problem
can be inverted with an overwhelming probability through
I1-minimization. There exists a list of candidate matrices A obeying
this property. These include the random Gaussian, the Bernoulli
and the partial Fourier matrices [27]. However, computing these
RIP constants is a non-deterministic polynomial-time hard prob-
lem and is not possible for most matrices [31]. In practice this
requirement is often replaced by ensuring that matrices B and ®
are incoherent [32,30]. This is mathematically verified by checking
that the coherence, i.e. the maximum value of the scalar product
between all the columns of the A matrix, is smaller than a constant
defined in [33], meaning that the matrix A is nearly orthonormal.

The Basis Pursuit Denoising (BPDN) [26,27] algorithm is a
[1-minimization algorithm that guarantees exact reconstruction
[34] by solving the following problem

min||a|, subject to |y —Ax|’ < o (3)

where ¢ is a constant related to the noise level in the measure-
ments, with ¢ = 0 in the absence of noise. The BPDN algorithm used
is this paper is SGPL1, which is a solver for large scale sparse recon-
struction that employs convex optimization to find a sparse repre-
sentation of « even when B is an over-complete dictionary of basis
functions [35,36]. Accordingly, an estimation of the sparse optimum
can be found even if the vectors in B are coherent with one another.
As many of the BPDN solvers, SPGL1 is robust to measurement noise
and takes ¢ as the only input parameter.

3. Guided wavefield reconstruction through Compressed
Sensing

We formulate the reconstruction process by considering a
wavefield as a compressible signal in space. Accordingly, let P be
the number of regularly spaced pixels on which a wavefield is
defined. The goal is to reconstruct the wavefield from the knowl-
edge of M sparse measurements such that M < P. The dispersion
relations of the media and the Lamb wave propagation equation
are used to formulate a sparsifying basis for the wavefield. In the
proposed process, location of the sources are first estimated from
M measurements by means of a [1-minimizer and the sparsifying
basis (Eq. (3)). The estimated sources are then used to extrapolate,
or reconstruct, the wavefield over a desired grid of P points, which
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