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a b s t r a c t

In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelec-
tric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and
anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion
relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of
mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies
of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the
trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number
and may extend the frequency range for energy trapping. Those results are of fundamental importance
and can be used as a reference to develop effective two-dimensional plate equations for structural anal-
ysis and design of film bulk acoustic resonators.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic wave resonators made from piezoelectric crystals are
key components of circuits for alternating currents and have been
widely used for time keeping, frequency operation, signal genera-
tion and processing as frequency standards. During the last one
to two decades, researchers succeeded in depositing with good
enough quality a thin piezoelectric film of AlN or ZnO with proper
electrode configuration on a silicon layer to form thin film bulk
acoustic wave resonators (FBARs) [1–3]. Compared with conven-
tional acoustic wave resonators, FBARs have a series of advantages
such as much smaller size and compatible fabrication with other
on-chip and integrated circuit (IC) technologies and have become
research hot recently. There are several structural types of FBARs
operating with thickness modes [4–8] or solidly mounted on an
elastic substrate [9,10]. Fig. 1 shows the structure of a typical,
basic, and widely used type of FBARs which is the one that is going
to be studied in the current paper. Structurally, the FBAR in Fig. 1 is
a multilayered plate with metal electrodes, a piezoelectric film, and
an elastic layer. The c-axis of the piezoelectric film is in the x3
direction. To aid the analysis and design of FBARs, it is necessary
to obtain accurate predictions of their frequency and mode shapes.
Starting from the three-dimensional linear piezoelectric equations,
however, direct solution to such a multilayered structure is still

mathematically changing, no matter theoretically or numerically
[11–13]. Up to now, most theoretical analyses on FBARs are based
on one-dimensional models which can describe the most basic
vibration characteristics of FBARs [7,14–18]. However, for real
devices of finite plates, one-dimensional models are inadequate.
They cannot describe the in-plane mode variations associated with
finite plates. They are also incapable of describing mode couplings
induced by wave reflections at the plate edges in finite devices.
Recently, Qian’s group [19] has studied the free vibrations of FBAR
multilayered structures by using the Steven–Tiersten’s two-
dimensional scalar differential equations [20] which are mathe-
matically simple and accurate, and can describe the in-plane vari-
ation of the operating thickness-extensional mode and the related
energy trapping in FBARs. The main limitation of the scalar equa-
tion is that it is for the single operating mode of the FBAR only
and therefore cannot describe mode coupling, although it has in-
plane mode variation in the model [20]. At present, the design
and operation of FBARs are adversely affected by various couplings
between the operating mode and other unwanted modes. The
understanding of the mechanism of these mode couplings is lim-
ited. Therefore, it is extremely needed to develop effective two-
dimensional plate equations which can simultaneously describe
both the in-plane mode couplings and the energy trapping vibra-
tion phenomenon. One way is to follow Mindlin’s approach in
treating mode couplings and in-plane mode variations in conven-
tional quartz resonators [21–25]. The structures of FBARs are mul-
tilayered and hence are more complicated than single-layered
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quartz resonators, for which we first need to obtain accurate
results of dispersion curves and cut-off frequencies in the wave
number range of interest for the operation of FBARs. This motivates
the current work in this paper.

Since the structures of FBARs shown in Fig. 1 have two different
regions, with or without a top driving electrode, we consider wave
propagation in plate models for FBARs with a top electrode layer
and without a top electrode layer, respectively. Both plane and ani-
plane waves were taken into account. From the three-dimensional
piezoelectro-elastic equations, an exact procedure was established
to calculate dispersion relations, cut-off frequencies and vibration
distributions of selected modes. Those results are of fundamental
importance and can be used as a reference to improve the accuracy
of the two-dimensional plate equations by requiring the cutoff fre-
quencies and the curvatures of the dispersion curves at cutoff fre-
quencies predicted by the two-dimensional plate equations and
the three-dimensional equations to be the same.

2. Theoretical derivation

Consider the composite plates in Fig. 2. We study straight-
crested waves without x2 dependence, i.e., o/ox2 = 0. In this case,
the equations of linear piezoelectricity for ZnO or other crystals
of class 6 mm with the c axis along x3 decouples into two groups.
One gives the displacement components u1 and u3 as well as the
electric potential u, which corresponds to plane-strain wave case.
The other is for u2 alone which corresponds to anti-plane wave
case. The two cases will be dealt with below, respectively.

2.1. Plane-strain waves

The relevant equations of motion and the charge equation of
electrostatics are

T11;1 þ T31;3 ¼ q€u1;

T13;1 þ T33;3 ¼ q€u3;

D1;1 þ D3;3 ¼ 0;
ð1Þ

where the stress components Tij and the electric displacement
components Di are related to the displacement and electric
displacement gradients through the constitutive relations

T11 ¼ c11u1;1 þ c13u3;3 þ e31u;3;

T33 ¼ c13u1;1 þ c33u3;3 þ e33u;3;

T31 ¼ T13 ¼ c44ðu3;1 þ u1;3Þ þ e15u;1;

ð2Þ

and

D1 ¼ e15ðu3;1 þ u1;3Þ � e11u;1;

D3 ¼ e31u1;1 þ e33u3;3 � e33u;3:
ð3Þ

The substitution of Eqs. (2) and (3) into Eq. (1) gives

c11u1;11 þ c44u1;33 þ ðc13 þ c44Þu3;13 þ ðe31 þ e15Þu;13 ¼ q€u1;

c44u3;11 þ c33u3;33 þ ðc44 þ c13Þu1;31 þ e15u;11 þ e33u;33 ¼ q€u3;

ðe15 þ e31Þu1;13 þ e15u3;11 þ e33u3;33 � e11u;11 � e33u;33 ¼ 0:

ð4Þ

Similarly, for silicon layer which is a cubic crystal, from the
equations of anisotropic elasticity we have

cs11u1;11 þ cs44u1;33 þ cs13 þ cs44
� �

u3;13 ¼ qs€u1;

cs44u3;11 þ cs33u3;33 þ cs44 þ cs13
� �

u1;31 ¼ qs€u3;
ð5Þ

where we have used a superscript ‘s’ to indicate the material con-
stants of silicon layer.

At the top of the composite plate where x3 = hf, mechanically
the surface is free. Electrically the surface may be electroded and
grounded, or unelectroded. For an electroded surface, the boundary
conditions are

� T31ðhf Þ ¼ q0h0€u1ðhf Þ;
� T33ðhf Þ ¼ q0h0€u3ðhf Þ;
uðhf Þ ¼ 0;

ð6Þ

where q0 and h0 are the mass density and thickness of the top elec-
trode. In Eq. (6), we have assumed that the electrodes are very thin
and neglected their stiffness. For an unelectroded top surface, we
have

T31ðhf Þ ¼ 0; T33ðhf Þ ¼ 0; D3ðhf Þ ¼ 0: ð7Þ
At the interface between the ZnO film and the silicon layer

where x3 = 0, the continuity conditions are

u1ð0þÞ ¼ u1ð0�Þ; u3ð0þÞ ¼ u3ð0�Þ; uð0þÞ ¼ 0;

T31ð0þÞ � T31ð0�Þ ¼ q00h00€u1ð0Þ;
T33ð0þÞ � T33ð0�Þ ¼ q00h00€u3ð0Þ;

ð8Þ

where q00 and h00 are the mass density and thickness of the interface
electrode. At the bottom of the composite plate where x3 = �hs the
traction-free boundary conditions are

T31ð�hsÞ ¼ 0; T33ð�hsÞ ¼ 0: ð9Þ
We look for time-harmonic wave solutions that may exist in the

composite plate. The ZnO film and the silicon layer need to be trea-
ted separately initially, and then boundary and continuity condi-
tions will be applied.
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Fig. 1. Cross section of a typical thin AlN or ZnO film on a silicon layer as an FBAR.
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Fig. 2. Plate models for FBARs: (a) without a driving electrode; (b) with a driving electrode.

106 F. Zhu et al. / Ultrasonics 67 (2016) 105–111



Download English Version:

https://daneshyari.com/en/article/1758627

Download Persian Version:

https://daneshyari.com/article/1758627

Daneshyari.com

https://daneshyari.com/en/article/1758627
https://daneshyari.com/article/1758627
https://daneshyari.com

