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a b s t r a c t

We investigate the potential of using ultrasonic diffraction tomography technique for characterization of
biological tissues. Unlike most of other studies where ultrasonic tomography operates at frequencies
higher than 1 MHz, low-frequency tomography uses lower frequencies on the order of 0.3–0.5 MHz.
Such a choice is due to low attenuation at these frequencies, resulting in higher precision of input data.
In this paper we explore transmission and reflection schemes for both 2D (layer-by-layer) and 3D tomog-
raphy. We treat inverse tomography problems as coefficient inverse problems for the wave equation. The
time-domain algorithms employed for solving the inverse problem of low-frequency tomography focus
on the use of GPU clusters. The results obtained show that a spatial resolution of about 2–3 mm can
be achieved when operating at the wavelength of about 5 mm even using a stationary 3D scheme
with a few fixed sources and no rotating elements. The study primarily focuses on determining the
performance limits of ultrasonic tomography devices currently designed for breast cancer diagnosis.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The differential diagnosis of breast cancer is a problem of prime
importance in modern medicine. Common medical devices for
ultrasonic examination usually employ a reflection-based scheme
[1–4]. In the simplest case, where sounding is performed with
the emitter at a fixed position, the doctor sees an image in the form
of a time sweep of the ultrasonic signal reflected from internal
organs within a narrow angle. A transducer array is usually
employed to this end. It seems a natural solution to collect the
reflected signals by moving the transducer array around the object
studied. One can use the resulting data to try to reconstruct the
internal structure of the object studied. However, high-quality
tomographic images cannot be reconstructed using reflection data
alone. The analysis of various tomography schemes and their
optimisation is a problem of vital importance whose solution
was addressed in many publications [5–7].

Most of the published studies in this field are dedicated to the
development of ultrasonic tomography devices operating at the
frequencies of 1–3 MHz or higher. The use of ray-based models
appears to be a reasonable approach in this frequency domain.
Theoretical frameworks have been developed and prototypes have

been made that implement these approaches in 2D layer-by-layer
schemes [8–10] and in fully 3D schemes [11,12]. Inverse problems
of ultrasonic tomographic diagnostics are nonlinear in contrast to
those arising in X-ray tomography. Refraction puts into question
the applicability of layer-by-layer models [13]. Attempts to solve
inverse problems in the 3D formulation appear to offer better pro-
spects. Three-dimensional inverse problems of ultrasonic tomogra-
phy, which are much more computationally expensive, can be
tackled with computing clusters equipped with graphics process-
ing units (GPU) [14–16]. Attempts have been made to improve
the results obtained using ray models [17]. The disadvantage of
ray-based models is that they are incapable of describing such
wave phenomena as diffraction and multiple scattering. Pratt
et al. [18] attempted to estimate the impact of wave effects on
the tomographic image reconstruction. Kretzek and Ruiteret al.
[15] also try to solve ultrasonic tomography problems in the ray
optics approximation. These authors use the velocity structure
reconstructed in the ray approximation for reflectivity image
reconstruction.

The use of models based on wave equations in ultrasonic
tomography is a more promising approach. Inverse problems of
ultrasonic tomography in wave-based models are nonlinear and
many authors use various linearised approximations to solve them.
The most common approach involves the use of the so-called Born
approximation of the wave equation [19,20]. From the practical
point of view, linearised approximations have a rather limited
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potential for solving nonlinear problems and can be used only in
the neighborhood of the required solution, which is unknown in
the case of inverse problems. The study [21] analyses the limiting
capabilities of linearised Born-type models. However, from the the-
oretical point of view, linearised approximations can be used for
qualitative analysis of tomography schemes [6,22].

At present, prototype ultrasonic tomography devices have been
developed for the use in breast examinations [23–25] with the data
interpreted in terms of nonlinear wave models. Wiskin et al. [23]
use narrow-band ultrasonic wave sources with frequencies above
1 MHz. Approximate algorithms have been developed for solving
the inverse problems of 3D ultrasonic tomography in the wave
approximation of the Helmholtz equation. These algorithms have
been tested on a prototype tomographic device for breast cancer
diagnosis. Both transmission and reflection data are used to solve
the inverse problem. The algorithms are implemented as a two-
stage procedure. In the first stage, the spatial distribution of the
speed of sound is reconstructed approximately using a transmis-
sion tomography scheme within the framework of a parabolic
model in the form of the Helmholtz equation approximation for
small refraction angles. In the second stage, an attempt is made
to use the reflected signal to improve the derived approximations.
Unlike Wiskin et al. [23], in this paper we demonstrate the feasibil-
ity of a low-frequency ultrasonic tomography device operating in
the 300–500 kHz frequency range. We develop algorithms for
solving three-dimensional nonlinear inverse problem in terms of
the model of hyperbolic wave equation with no simplifying
assumptions.

The authors of some studies [24] attempt to reconstruct both
the velocity structure and the density distribution. It is shown that
the velocity structure can be recovered better than the density dis-
tribution. In real objects attenuation is always present. We showed
[25] that in the case of low attenuation in a model incorporating
both diffraction and attenuation effects the velocity structure can
be reconstructed better than the attenuating properties. In the case
of low attenuation the reconstructed velocity structure depends
only slightly on the attenuation model employed. The velocity
structure can be reconstructed fairly well even if the input data
errors are of about 5%, whereas the distribution of attenuating
properties in the medium cannot be recovered in this case. Similar
results follow from the studies of Wiskin et al. [26].

The aim of this study is to develop efficient algorithms for solv-
ing 2D and 3D problems of acoustic tomography in terms of wave
models. Inverse problems are considered as coefficient inverse
problems of the reconstruction of the velocity structure in the
diagnosed region. From the mathematical point of view there are
two approaches to solving inverse problems of ultrasonic tomogra-
phy. On the one hand, one can try to develop algorithms using
finite-difference schemes for differential equations. An alternative
approach is represented by the well-known Green function
method, which allows reformulating the inverse problem as a non-
linear operator equation [7,27]. The inverse problem of ultrasonic
tomography in the Green function representation has a number
of advantages including the possibility of a simple formulation of
the problem as a set of nonlinear operator equations. The
undoubted advantage of such a formulation is that it requires no
boundary conditions to be imposed except for the natural
Sommerfeld radiation condition at infinity.

However, the integral approach has a very important disadvan-
tage due to the extremely computationally expensive nature of the
algorithms involved. Lavarello and Oelze [7] showed that the num-
ber of operations in the iterative algorithm proposed for solving
the nonlinear problem scales as O(N6) in the 3D case and O(N5)
in the 2D case, where N is the number of grid points along one
dimension. We obtained a similar result in our study [27], where
we used an iterative process based on the Newton method.

The strong dependence of the number of operations on the number
of grid points forced us to solve inverse problems on a
50 � 50 � 50 grid. In real-life applications a 400 � 400 � 400 or
denser grid is needed to address the 3D problem of ultrasonic
tomography, resulting in the increase of the computational time
by a factor of several tens of thousands. The situation cannot be
remedied even by using a supercomputer. Even with a factor of
1000 speedup compared to a PC, a supercomputer would allow
the number of grid points to be increased by a factor offfiffiffiffiffiffiffiffiffiffiffiffi
10006

p
� 3 along each dimension. This is a typical problem for

the integral approach.
It follows from the above that the development of algorithms

that can be run within practically feasible time onmodern comput-
ers is of great importance in three-dimensional inverse problems of
ultrasonic tomography. The breakthrough results in the solution of
inverse problems of wave tomography are associated with the
studies that demonstrate the possibility of exact computation of
the gradient of the residual functional by solving a ‘conjugate’
problem [19,28,29]. In this paper we use gradient-based minimisa-
tion methods to solve the nonlinear problem as a coefficient
inverse problem for differential equation. The algorithms
employed are based on finite-difference time-domain (FDTD)
numerical methods and require only O(N4) operations to solve
the three-dimensional problem.

2. Formulation of the direct and inverse problems of ultrasonic
tomography and numerical algorithms employed in the
two- and three-dimensional case

Fig. 1 illustrates the arrangement of the sources and detectors
for the three-dimensional inverse problem. Number 1 denotes
the sources and number 2 denotes the detectors of ultrasonic radi-
ation, which are located on the faces of the cube X. We assume
that the object G is located inside the cube X. The remaining space
L is filled with water with known sound speed v0. Fig. 2 illustrates
the arrangement of the sources and detectors for the layer-by-layer
tomography scheme, where the three-dimensional problem is
replaced by a set of two-dimensional problems. Numbers 1 and 2
in Fig. 2 denote the sources and detectors, respectively; G is the
domain under study, and L is the domain with known sound speed
v0.

In this study, we address the inverse problem using the wave
approximation in the time-domain formulation with point sources.
Acoustic pressure field u(r, t) in the domain X � RN (N = 2, 3)
produced by a point source located at point r0 and generating a
pulse described by function f(t), obeys the wave equation:

cðrÞuttðr; tÞ � Duðr; tÞ ¼ dðr � r0Þ � f ðtÞ; ð1Þ
uðr; t ¼ 0Þ ¼ utðr; t ¼ 0Þ ¼ 0; ð2Þ
@nujCT ¼ pðr; tÞ; ð3Þ

where t is the time, 0 < t < T; u is the acoustic pressure; c(r) = v�2(r),
v(r) is the sound speed in the medium; D is the Laplace operator
with respect to r 2 RN (N = 2, 3), C is the boundary of the domain
N; @nu|CT is the derivative along the normal to the surface C in
the region C � (0,T), and p(r, t) is a known function.

The two-dimensional wave equation (for N = 2) describes a
three-dimensional problem that is independent of one of the
coordinates. For example, if the object does not vary along one of
the dimensions and is sounded with cylindrical waves. The two-
dimensional version of the model can be used as an approximation
for 3D computations if the object under study varies only slightly
along one of the dimensions. In medical tomography, where
the structure and parameters of an irregularity have to be
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