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a b s t r a c t

This article describes the use of the frequency domain finite element (FDFE) technique for guided wave
mode selection in inhomogeneous waveguides. Problems with Rayleigh–Lamb and Shear-Horizontal
mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of
the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally,
an example of guided wave mode selection for inspecting disbonds in composites is presented.
Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretiza-
tion parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and
the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations
with regard to the choice of the above parameters are provided.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ultrasonic guided waves are widely used as a tool for a variety
of problems in nondestructive evaluation (NDE) and structural
health monitoring (SHM). As opposed to bulk waves which travel
in unbounded media, guided waves require boundaries to guide
the energy in the structure. Also, there exists multiple guided wave
modes in the structure owing to the nature of the eigenvalue prob-
lem associated with the structure. Hence, guided wave mode-
selection [1] is the key to identify specific kinds of defects. For this,
it is necessary to have a thorough understanding of the character-
istics of wave propagation in waveguides. Two essential features
that characterize the wave propagation in a homogeneous waveg-
uide, where there are no changes (material or geometric) along the
length of the waveguide, are dispersion curves and wavestructures
[2].

While dispersion curves depict the frequency-wavenumber
(x; k) combinations at which propagating guided wave modes
exist in the structure, wavestructures describe the through-
thickness displacement/stress profiles for the guided wave modes.
Both dispersion curves and wavestructures guide the choice of a
mode and frequency for a particular application. While analytical
solutions to obtain dispersion curves and wavestructures are avail-
able for simple geometries like those of homogeneous plates and
pipes [2,3], numerical methods are the only resort for more com-

plicated geometries. Several approaches have been used in the past
to address the above issue [4]. The finite difference approach and
the finite element method (FEM) [5] are by far the most commonly
used numerical techniques to study wave propagation in inhomo-
geneous waveguides. Even though time-domain transient dynamic
analysis using FEM has the capability to simulate wave propaga-
tion in structures of large sizes and complex shapes, it requires a
lot of computational effort in most cases. Hence, other approaches
such as the semi-analytical finite element method (SAFE) [6],
which is a hybrid approach combining analytical and finite ele-
ment methods, are being used to study homogeneous waveguides.
While it is possible to obtain dispersion curves and wavestructures
for waveguides which are homogeneous in the propagation direc-
tion using SAFE, inhomogeneous waveguides, where the material
or geometry changes along the length of the waveguide, call for a
different approach. Of particular interest are functionally graded
materials, inhomogeneous periodic waveguides and waveguide
transitions [7].

For example, the problem of guided wave mode conversion
across a discrete waveguide transition [7] is studied using SAFE
and the normal mode expansion technique. The approach was to
use solutions from SAFE to model the wave field in the homoge-
neous regions before and after the transition and then use the
appropriate boundary conditions at the transition to determine
the modal content in the respective wave fields. It is noted that
such a transition is a rather simple inhomogeneity and such good
workable solutions are not known for more complex inhomoge-
neous waveguides, impairing the efficiency of NDE/SHM in
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inspecting them. This article demonstrates the use of a frequency
domain finite element (FDFE) approach for guided wave mode
selection for NDE/SHM of inhomogeneous waveguides. The FDFE
approach has previously been used to study the scattering
from defects and reflection and transmission of waves across inter-
faces [8–10] and waveguide transitions [11]. The corresponding
results are compared with those from time-domain finite element
approach and are found to be in good agreement. To the best of
our knowledge, the above approach has not been employed for
guided wave ultrasonic inspection, so we address this practical
issue here. The advantages of FDFE relative to time-domain analysis
include: computational efficiency, it permits study of mode conver-
sion, it gives phase velocities as opposed to group velocity, and it
enables an efficient method to select modes sensitive to damage.

The content of this article is organized as follows. Section 2 pre-
sents the background, theory and formulation of the elastic bound-
ary value problem in the frequency domain. Then Section 3
demonstrates the approach for an isotropic homogeneous plate
where the phase velocities and wavestructures of Rayleigh–Lamb
(RL) and Shear-Horizontal modes (SH) are recovered. Next, Sec-
tion 4 presents the results obtained from applying FDFE for two
cases of inhomogeneous waveguides. There are many types of
inhomogeneous waveguides that are of practical importance for
NDE and SHM. Damage localization is one good example. The
change in energy transmitted through the damaged region is nec-
essary for through-transmission methods and the wave energy
reflected by the damaged region is required for pulse-echo meth-
ods. The idea of mode selection using FDFE is outlined and the spe-
cial case of a disbond in an adhesively bonded joint between
composite laminates is presented as an example. The effect of
parameters such as discretization on the solution of FDFE is pre-
sented in Section 5 and the conclusions are drawn in Section 6.

2. Frequency domain finite element approach (FDFE)

The governing equations for a linear elastic waveguide [12] are
given by

r � r ¼ q€u ðBalance of linear momentumÞ ð1Þ
r ¼ C� ðConstitutive relationÞ ð2Þ

� ¼ 1
2
ðruþ ðruÞTÞ ðStrain-displacement relationÞ ð3Þ

where r denotes Cauchy stress, C represents the tensor of elastic
moduli, � is the strain tensor, u denotes the displacement field
and q denotes the mass-density of the material. The frequency
domain finite element approach attempts to solve Eqs. (1)–(3) in
the frequency domain. Solution in the frequency domain gives the
characteristics of a system in terms of the frequency response func-
tion/modal response function. Just as one can determine a fre-
quency response function for a particle system, one could extend
a similar concept to characterize the structural behavior of the
waveguide.

Consider the forced vibration of a particle attached to a spring
as shown in Fig. 1. The frequency response function can be written
as HðxÞ ¼ 1=ðj�mx2Þ, where j; m, andx are stiffness, mass, and
frequency respectively. The natural frequency of the system is
obtained by setting j�mx2 ¼ 0. Likewise, a continuum can be
thought of as an infinite system of particles and hence it has infi-
nite natural frequencies. Similarly, a waveguide could be thought
of as a vibrating continuum whose response can be captured in a
modal response function/transfer function, which could be
described as Hðx; kÞ where x denotes the frequency and k the
wavenumber. The propagating wave modes can be identified as
zeros of the transfer function Hðx; kÞ. For example, Hðx; kÞ for
the wave propagation in an isotropic, homogeneous, traction free

plate [2] is given by Hðx; kÞ ¼ ðDsðx; kÞDaðx; kÞDSHðx; kÞÞ�1, where

Dsðx; kÞ ¼ tanðqhÞ
tanðphÞ þ

4k2pq

ðq2 � k2Þ2
Symmetric RL modes ð4Þ

Daðx; kÞ ¼ tanðqhÞ
tanðphÞ þ

ðq2 � k2Þ2

4k2pq
Antisymmetric RL modes ð5Þ

DSHðx; kÞ ¼ qh� np
2

; n ¼ 1;2; � � � ; SH modes ð6Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
l
� k2

� �s
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2t
� k2

� �r
, with cl and ct repre-

senting the longitudinal and transverse wave speeds in the
material.

The function Hðx; kÞ could be explicitly determined either ana-
lytically or numerically as above in very few cases. For the case of
inhomogeneous waveguides or waveguides with complex geome-
tries, it may not be possible for a single wavenumber k to charac-
terize the displacement field in the entire waveguide at a given
frequency x owing to the inhomogeneous nature of the waveg-
uide. Hence it is an onerous task to identify a particular mode suit-
able for a given NDE/SHM application. One alternative approach is
to study the wave propagation for various excitations (boundary
conditions) using time-domain FEM techniques, use the time-
domain data to determine the displacement field, and then apply
a 2DFFT (spatio-temporal fast Fourier transform) to determine
the frequency-wavenumber content in the displacement field.

The other approach, i.e., FDFE, attempts to solve the problem for
time harmonic excitations; i.e., in the frequency domain. It
assumes a time harmonic nature of displacement, stress and strain
fields and solves Eqs. (1)–(3) at each frequency. To be specific, we
assume u ¼ uðx̂Þeixt and r ¼ rðx̂Þeixt where x̂ denotes the position
of the material point in Cartesian space ðx; y; zÞ. The balance of lin-
ear momentum under the above assumptions simply becomes

r:rðx̂Þ þ qx2uðx̂Þ ¼ 0 ð7Þ
Note that time-derivatives are eliminated with the time-

harmonic assumption. Importantly for the problems at hand, any
inhomogeneities in the material properties or the geometry can
be incorporated in the finite element discretization. Eq. (7) is
solved using FEM to obtain uðx̂Þ at each frequency x. The advan-
tage of this approach is that the computational cost is considerably
reduced because we end up solving a pseudo-static problem that
requires no time-stepping as in the time-domain finite element

Fig. 1. Schematic of spring-mass system.

Fig. 2. Schematic of the model used for the simulations.
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