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a b s t r a c t

To extend the theory of the temperature dependence of the elastic constants in cubic crystals beyond the
second- and third-order elastic constants, the fourth-order elastic constants, as well as the non-linearity
in the thermal expansion temperature dependence, have been taken into account. Theoretical results
were represented as temperature functions of the effective elastic constants and compared with experi-
mental data for a number of cubic crystals, such as alkali metal halides, and elements gold and silver. The
relations obtained give a more accurate description of the experimental temperature dependences of
second-order elastic constants for a number of cubic crystals, including deviations from linear behavior.
A good agreement between theoretical estimates and experimental data has been observed.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

For most crystals, the typical temperature behavior of the sec-
ond-order elastic constants (SOEC) is a decrease as temperature
increases with an insignificant dependence at low temperatures.
Such temperature dependences, especially at room temperatures,
are important for solid-state physics and applications of crystals,
in designing effective devices such as sensors and resonators.
One more attractive task is the calculation the temperature-stable
crystalline cuts for crystals or complex layered structures, where
abnormal SOEC temperature dependences arise. Recall that SOEC
temperature dependences feature anharmonicity. The study of
the temperature dependence of elastic constants for crystals was
provided in Refs. [1–13]. In Ref. [1], the temperature dependences
of elastic constants for Si, Ge, and fused silica were measured by an
ultrasonic method. Existing theories of the SOEC temperature
dependences are based on the Debye model, taking into account
the anharmonicity of atomic lattice vibrations. For the correct
description of the temperature dependences over a wide tempera-
ture range, the temperature dependence of the phonon number
was included in these considerations. However the relations
obtained are too complicated. A simpler theory based on small-
amplitude bulk acoustic wave (BAW) propagation in crystals
under the influence of finite bias fields, has been derived in
Sorokin et al. [14] to explain the linear SOEC temperature depen-
dences in cubic crystals. First-order temperature coefficients of

the elastic constants have been obtained, taking into account the
SOEC and third-order elastic constants (TOEC), as well as linear
thermal dilatation. A satisfactory agreement between calculated
and experimental results for a number of cubic crystals has been
achieved. A study of the linear temperature coefficients for trigo-
nal, hexagonal, and tetragonal crystals was reported in [15].

A similar method of calculation has been used in Ref. [16] for
the temperature dependence of the resonant frequency in quartz
piezoelectric resonators. Nevertheless, such approaches should
only be applied in quantifying the linear temperature dependence.
Hence extending the relations obtained earlier is necessary to
improve concordance between theoretical and experimental data
on the SOEC temperature dependences for a broad temperature
band.

The main objective of this paper is to expand the theory
describing the temperature dependence of the elastic constants
in cubic crystals up to non-linear behavior by incorporating the
fourth-order elastic constants (FOEC), as well as the non-linearity
of the thermal expansion temperature dependence.

2. Temperature dependence of elastic constants

In the BAW propagation theory for crystals subjected to tem-
perature changes, geometrical and physical non-linearities in the
elastic media must both be taken into account (Aleksandrov et al.
[17]). The first leads to the dilatation of crystalline specimen, dis-
torting its shape and, therefore, changing the path of the acoustic
wave. The second leads to a weakening in chemical bonds between
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atoms as a result of thermal expansion usually producing a
decrease in the macroscopic elastic constants of a crystal. The
modified Green–Christoffel equation for elastic waves of small
amplitude in a uniformly deformed elastic medium, referred to
as the initial (natural) state, can be written as [17]:

½CBCð�gÞ � q0v2dBC �eUB ¼ 0; ð1Þ

where CBCð�gÞ is the effective Green–Christoffel tensor, dBC the
Krönecker delta, q0 the density of the crystal in the undisturbed

state, v the phase velocity, and eUB the BAW polarization unit vector;
Latin indices vary from 1 to 3. For a mechanically free sample, the
static deformation arising as a result of thermal expansion can be
written as:

�gPQ ¼ a�PQ DT; ð2Þ

where a�PQ is the effective tensor of the temperature expansion, and
DT the temperature variation. Here the effective tensor of the
thermal expansion will be used in the form:

a�FC ¼ aFC þ bFCDT; ð3Þ

where aFC is the linear, and bFC the non-linear coefficients of expan-
sion. We take the effective elastic constants as:

C�ABCD ¼ CABCD þ CABCDPQ �gPQ þ
1
2

CABCDPQMM �gPQ �gMN þ . . . ; ð4Þ

where CABCD, CABCDEF, and CABCDEFGH are the second-, third- and
fourth-order elastic constants, respectively. The small difference
between isentropic and isothermal elastic constants is neglected.
The solutions to Eq. (1) are taken in conventional form as plane
elastic waves in the continuum approximation. Taking into account
the Green–Christoffel’s tensor in the form as obtained earlier [17],
and the relations (2)–(4), one can present a new view of the
Green–Christoffel tensor:

CBCðDTÞ¼ �CFCC�ABFDNAND¼ �CFCNAND

� CABFDþCABFDPQa�PQ DTþ1
2

CABFDMNPQa�PQa�MNðDTÞ2
� �

: ð5Þ

Here NA are the components of the unit vector associated with the
direction of wave propagation. Under thermal expansion of a
mechanically free crystal, Green’s tensor for static finite deforma-
tion will be written as:

CFC ¼ dFC þ 2�gFC ¼ dFC þ 2a�FCDT; ð6Þ

where �gFC is the tensor of static deformations.
Taking into account only the terms proportional to (DT) and

(DT)2, one obtains:

CBCðDTÞ ¼ CABCD þ ð2CABPDdCQ þ CABCDPQ ÞaPQDTf
þ ð2CABPDdCQ þ CABCDPQ ÞbPQ þ ð2CABMDPQ dCN
�
þCABCDPQMNÞaPQaMN�ðDTÞ2

o
NAND: ð7Þ

Solutions of Eq. (1) in the form (7) for chosen BAW modes in
certain special directions gives us the temperature dependence of
their velocities and then the SOEC temperature coefficients. The
symmetry of the TOEC and FOEC for cubic crystals was given in
Refs. [18,19].

For example, let us consider a cubic crystal, where the acoustic
waves along the propagation direction [100] are excited. In this
case, the Green–Christoffel tensor should be written in a diagonal
form:

CBCðDTÞ ¼
C11ðDTÞ 0 0

C22ðDTÞ 0
C22ðDTÞ

0
B@

1
CA; ð8Þ

where

C11 ¼ C11 þ ð2C11 þ C111 þ 2C112Þa11DT

þ 2b11C11 þ 2a2
11ðC111 þ 2C112Þ þ b11ðC111 þ 2C112Þ

�
þ1=2a2

11ðC1111 þ 4C1112 þ 2C1122 þ 2C1123Þ
�
ðDTÞ2; ð9Þ

C22 ¼ C44 þ ð2C44 þ C144 þ 2C155Þa11DT

þ 2b11C44 þ 2a2
11ðC144 þ 2C155Þ þ b11ðC144 þ 2C155Þ

�
þ1=2a2

11ðC1144 þ 4C1155 þ 2C1255 þ 2C1266Þ
�
ðDTÞ2: ð10Þ

The eigenvalues of the tensor, Eq. (8), are k1 ¼ q0v2
L ¼ C11ðDTÞ

for pure longitudinal acoustic wave, and k2 ¼ k3 ¼ q0v2
S ¼ C22ðDTÞ

for pure shear acoustic waves. The directions of the shear wave
polarizations are both perpendicular to vector N. (9) and (10) can
be used to obtain the first- and second-order temperature
coefficients for the C11 and C44 elastic constants. To calculate the
coefficients for the C12 elastic constant, a BAW propagation along
the [110] direction needs to be considered.

We note that in Shrivastava [12] an additional contribution from
a phonon-lattice interaction (or phonon pressure) was invoked to
explain the anomalous temperature dependence of the C12 elastic
constant in NaCl-like structures of alkali halide crystals. The effective
elastic constants under isotopic phonon pressure can be written as

C�11 ¼ C11 � Pphonon;

C�12 ¼ C12 þ Pphonon;

C�44 ¼ C44 � Pphonon:

ð11Þ

Hence, the temperature dependence of the elastic constants in
the Shrivastava model can be presented as:

dC�11

dT
¼ dC11

dT
� dPphonon

dT
;

dC�12

dT
¼ dC12

dT
þ dPphonon

dT
;

dC�44

dT
¼ dC44

dT
� dPphonon

dT
;

dPphonon

dT
¼ ðC11 þ 2C12Þa11:

ð12Þ

3. Comparison of theoretical and experimental results

Assuming that the components of linear and nonlinear elastic
constants are the temperature independent parameters, the
temperature dependences of effective elastic constants can be
calculated exploiting the expressions of the Green–Christoffel’s
tensor eigenvalues. For example, writing the eigenvalue (9) as:

k1ðDTÞ ¼ C11 þ TC11 � DT þ T2C11 � ðDTÞ2 ¼ C11 þ DC11; ð13Þ

where TC11 = dC11/dT, and T2C11 = d2C11/dT2 and taking into account
the results of BAW propagation along both [100] and [110] direc-
tions by following [14], a complete set of expressions for the tem-
perature coefficients for SOEC of cubic crystals is obtained:

TC11 ¼ ð2C11 þ C111 þ 2C112Þa11;

T2C11 ¼ ð2C11 þ C111 þ 2C112Þb11þ
þð2C111 þ 4C112 þ 1=2C1111 þ 2C1112 þ C1122 þ C1123Þa2

11;

TC44 ¼ ð2C44 þ C144 þ 2C155Þa11;

T2C44 ¼ ðC44 þ C144 þ 2C155Þb11þ
þð2C144 þ 4C155 þ 1=2C1144 þ C1155 þ 2C1255 þ C1266Þa2

11;

TC12 ¼ ð2C12 þ C123 þ 2C112Þa11;

T2C12 ¼ ð2C12 þ C123 þ 2C112Þb11þ
þðC111 þ 4C112 þ C123 þ C1112 þ C1122 þ 5=2C1123Þa2

11:

ð14Þ
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