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a b s t r a c t

A simple model is proposed for the ultrasonic atomization of polymer solutions. In this model, the
atomization process is approximated as an equilibrium process. It is shown that the minimum attainable
droplet size is determined by two parameters, the (Rayleigh) acoustic pressure acting on the surface of
the liquid, and the surface tension of the liquid. Increasing the viscosity of the liquid suppresses the for-
mation of small-sized droplets because of increased attenuation of the sound wave and thus decreased
acoustic pressure. Lowering the surface tension of the liquid (e.g., by spreading a surfactant film on
the liquid surface) has the opposite effect of enhancing the formation of smaller droplets. Also, there
exists a maximum limit for the droplet size, because when the produced droplet is too large, the aspira-
tion flow is unable to carry the droplet against sedimentation. These predictions are supported by exper-
imental observations.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ultrasonic atomization (or spray) is a versatile technique for
producing liquid micro droplets for various uses, particularly for
particulate drug formulations [1,2]. The ultrasonic spray method
is also recognized as a powerful tool to prepare nanostructured
materials [3]. The problem of estimating acoustic radiation pres-
sures at free liquid surfaces has been a subject of theoretical study
for some 50 years [4–8]. Many empirical studies have been
reported on how process conditions (such as excitation frequency
and amplitude, and liquid flow rate and geometry) and liquid prop-
erties (e.g., viscosity, surface tension) impact the numbers and
sizes of droplets produced for processes involving continuous
flows of liquids [9–14]. Recently, our laboratory has demonstrated
a very simple batch-type ultrasonic atomization process in which
liquid droplets produced are collected using a bench-top aspirator
[15,16]. Using this procedure, we were able to produce micron-
scale particles of a variety of polymeric materials (such as poly(vi-
nyl alcohol), poly(ethylene oxide), poly(vinyl pyrrolidone), and
their composites with carbon nanotubes). In these previous stud-
ies, we showed that the number and size of ultrasonically gener-
ated drops are governed by two dimensionless parameters: the

so-called Ohnesorge number, Oh (�go/(qRc)1/2 where go is the
zero-shear-rate viscosity of the liquid, q is the density of the liquid,
c is the surface tension of the liquid, and R is the radius of the cap-
illary formed by extension), and the Deborah number, De (�k/tR

where k is the relaxation time of the liquid, and tR is the Rayleigh
time (�qR3/c)1/2). When De > 1 (i.e., when capillary wave breakup
is delayed by a long relaxation time relative to the Rayleigh time
scale), larger droplets were observed; the elongated stream of liq-
uid breaks up into droplets due to the surface tension-driven
Rayleigh instability. The droplet number drops rapidly with
increasing Oh (i.e., as the viscous effect becomes dominant), and
eventually the process fails to produce any droplets when Oh
exceeds a certain value. These observations confirm the current
understanding of the ultrasonic atomization mechanism. In this
paper, we propose an alternative (and much more simplistic)
way of understanding the key aspects of the process. We are not
aware of any similar previous attempts in the literature.

2. Theoretical models

We propose a simple theoretical model that can be used to
rationalize the sizes of ultrasonically atomized liquid droplets. A
detailed analysis of this problem would require the use of interfa-
cial fluid mechanical approaches and simulations [5–7]. However,
in the present work, we will only use a simple thermodynamic
argument. Referring to the situation described in Fig. 1, let us
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specifically consider a droplet of radius R formed from a liquid
under acoustic pressure. We define the liquid in the droplet as
the control volume. The Gibbs free energy change associated with
transferring the liquid in the control volume from the bulk state to
the droplet form (DGdrop) can be expressed as

DGdrop ¼ Gl
dropðT; PÞ � Gl

bulkðT; PacoÞ

¼ Gl
bulkðT; PÞ þ 4pR2c

h i
� Gl

bulkðT; PacoÞ ð1Þ

Here we assume that the atomization process occurs at a constant
temperature (T), and the acoustic stress at the air–water interface
(Paco) that causes the droplet to form immediately relaxes to a value,
P (<Paco), for the liquid inside the atomized droplet. Under the
isothermal condition, the fundamental free energy equation
becomes dG (=VdP � SdT) = VdP (where V is the volume, and S is
the entropy), and since a liquid is typically effectively incompress-
ible, DG = VDP. Therefore, Eq. (1) can be rewritten as

DGdrop ¼ VdropðP � PacoÞ þ 4pR2c ¼ 4
3
pR3ðP � PacoÞ þ 4pR2c ð2Þ

where Vdrop is the volume of the droplet. It is obvious that the first
term on the right-hand side of the equation (i.e., the bulk term)
favors the formation of the droplet, whereas the second term (the
surface term) suppresses it. Also, the bulk term varies as R3,
whereas the surface term varies as R2; this means that at small R
the surface term dominates, while for large R the opposite is true.
Therefore, the acoustic stress would not be able to break up the liq-
uid at the air–water interface into too small-sized droplets – smal-
ler than a certain critical size; the surface tension imposes a
minimum attainable droplet size. We would like to point out that
Eq. (2) is analogous to the expression of the classical homogeneous
nucleation theory for the free energy change of forming a liquid
drop in surrounding vapor; the difference is that Eq. (2) concerns
the detachment of a droplet from a body of liquid, whereas the clas-
sical nucleation theory describes the nucleation of a liquid phase

from a supersaturated vapor; for this reason, the first terms of the
two free energy equations are different [17]. Similarly to the deriva-
tion of the Kelvin equation for homogeneous droplet nucleation
[17], this critical minimum droplet radius (designated as Rmin) can
be calculated by differentiating Eq. (2) and equating to zero (i.e.,
dDGdrop/dR = 0 at R = Rmin). This procedure gives

Rmin ¼
2c

Paco � P
ð3Þ

The equilibrium pressure of the liquid inside the droplet (P) is
unknown. To an approximation, one can assume that the pressure
inside the droplet is not much different from the vapor pressure of
the liquid at the given temperature; that is, P ffi Psat(T). In reality, P
is expected to be greater than Psat(T). Therefore, this assumption
likely provides a minimum likelihood estimate for Rmin.

We would like to note that in form Eq. (3) is identical to the
Young–Laplace equation that relates pressure differences to curva-
ture across a surface, DP = 2c/R [17]. This analogy allows us to
explain how ultrasonic surface disturbances give rise to atomiza-
tion. When the acoustic wave reaches the liquid’s surface, the
acoustic pressure produces capillary waves [4,9]. If the sizes of
the wave protrusions (�R) are large that the Laplace pressure
(2c/R) is less than the acoustic radiation pressure
(DP ffi Paco � Psat(T)), the wave peaks break off into droplets.
Therefore, Paco and c primarily determine the sizes of the resulting
droplets. Eq. (3) specifically explains how the parameters Paco and c
affect the sizes of the droplets formed by ultrasonic atomization of
a liquid; if one wants to reduce the sizes of the droplets, one would
need to increase the acoustic stress transmitted to the surface of
the liquid (e.g., by decreasing the viscosity of the liquid) or
decrease the surface tension of the liquid (e.g., by coating the sur-
face of the liquid with surfactants). We performed experimental
tests to qualitatively confirm these trends (discussed in Section 4).

We note that Eq. (3) predicts that Rmin scales linearly to c (given
that Paco is independent of c). This prediction is different from the
previously proposed relation, R = 0.17(8pc/qf2)1/3 where q is the
liquid density, and f is the frequency of the capillary waves on
the liquid surface [9]. The exact scaling relationship between R
and c remains to be tested experimentally. It is also interesting
to note that Eq. (3) shows how R depends on Paco (the ‘‘amplitude’’
of the ultrasonic waves) and thus on the energy intensity (‘‘loud-
ness’’) of the ultrasonic waves (I � P2

aco), whereas the Robert
Lang’s equation above defines R as a function of the frequency
(‘‘pitch’’) of the waves.

We expect that there also exists a maximum limit for the size of
the droplet (Rmax). This upper limit is imposed by the fact that if the
droplet is too large, the aspiration force applied to the droplet may
not be sufficient to overcome the sedimentation force and pull the
droplet toward the filter where the dried polymer particle will be
collected. This Rmax quantity can be evaluated by comparison of
the downward sedimentation versus upward aspiration forces.
The magnitude of the sedimentation force can be calculated as

Fsed ¼
4pR3

3
ðqdrop � qairÞg ffi

4pR3

3
qdropg ð4Þ

where qdrop is the density of the liquid inside the droplet (=1000 kg/
m3), qair is the density of the surrounding air (�1 kg/m3), and g is
the gravitational acceleration (=9.8 m/s2). The magnitude of the
aspiration force can be calculated as

Fasp ¼ f vvap ¼ ð6pgairRÞ
_Mvapvv

sat

A

 !
ð5Þ

where f is the viscous drag coefficient (=6pgairR for a spherical dro-
plet in air according to Stokes’ law), vvap is the water vapor flow
velocity, gair is the viscosity of the air (=1.827 � 10�5 Pa s), _Mvap is

Fig. 1. Schematic illustration of the ultrasonic atomization setup used in this study.
The dimensions of the main components are as follows: diameter of the
vessel = 6 cm, height of the liquid volume = 2 cm, diameter of the ultrasonic
transducer = 2 cm.
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