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a b s t r a c t

We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures
made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of
structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called
Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity
of the transmission spectra or the power law behavior of the measure of the energy spectrum have been
highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed
modes which propagate along the system, we study surface modes induced by the surface of the
Fibonacci superlattice. In comparison with solid–solid layered structures, the solid–fluid systems exhibit
transmission zeros which can break the self-similarity behavior in the transmission spectra for a given
sequence or induce additional gaps other than Bragg gaps in a periodic structure.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Phononic crystals (PC) constituted by periodic arrangements
(cells) of elastic/acoustic materials according to one (1D) [1], two
(2D) [2], and three (3D) [3] dimensions, have been a subject of
great interest during the last two decades because of their interest-
ing properties in the development of new acoustical systems [4].
These systems are characterized by the presence of frequency
regions where sound can propagate (bulk bands) and frequency
regions where sound cannot propagate (gaps). This property has
been exploited in the control and the guidance of the propagation
of sound in different PCs [5]. As concerns 1D systems, different
types of periodic structures such as solid–solid and solid–fluid lay-
ered materials as well as waveguides with different geometries are
conducted as analogs of 2D and 3D leading to several interesting
phenomena such as: omnidirectional band gaps [6,7] and selective
transmission by either guided modes [8] or interface resonance
modes [9], the possibility to enhance acousto-optical interaction

in hypersonic crystals [10,11] and to realize stimulated emission
of acoustic phonons [12] as well as ultrasonic metamaterials
[13]. The advantage of 1D systems lies in the facilities to design
different geometries and they require simple analytical and
numerical calculations to understand deeply different physical
phenomena observed in such systems.

Besides periodic systems, quasi-periodic ones have been the
subject of intensive study during the last two decades [14]. The
quasi-periodic structures are generally built from two blocks A
and B. Among them, the Fibonacci structure is constituted follow-
ing the Fibonacci rule Skþ1 ¼ SkSk�1 with S1 ¼ A; S2 ¼ AB and k is
the generation number. This leads to the Fibonacci sequences
(FS): S3 ¼ ABA; S4 ¼ ABAAB; S5 ¼ ABAABABA; . . . Merlin et al. [15]
were the first to have studied such structure in semiconductor
GaAs-AlAs superlattices (SLs). Since this work, much attention
has been paid to observe the exotic phenomena of Fibonacci sys-
tems [16,17] and interesting characteristics of these systems have
been concluded [18] essentially by theoretical studies based on
simple 1D models. It is known also that deterministic quasi-peri-
odic systems may exhibit localization, as the Anderson localization,
of sound and vibration [19]. Such phenomenon characterize any
wave when the structures exhibit disorder [20]. An example of
the properties of the propagation and localization of acoustic
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waves in Fibonacci modulated waveguides have been studied
theoretically by some of us [21] and checked experimentally by
King and and Cox [22].

Compared to solid–solid SLs, solid–fluid SLs have received less
attention [1]. Some years ago [23,24], we have performed an
extensive study on the existence of confined and surface modes
in finite and semi-infinite SLs made of a periodic repetition of
solid–fluid bilayers. We have shown that besides the gaps due to
the periodicity of the system these structures exhibit, other gaps
due to transmission zeros. These transmission zeros can lead to
new phenomena such as acoustic meta-materials [13], Fano
resonances [24] as well as the possibility to mimic an acoustic
transparency by squeezing a resonance between two transmission
zeros [25]. The possibility of using these materials as acoustic
mirrors and filters was also demonstrated [24]. Based on this work
[24], a recent paper [26] has explored the tunneling effect between
two different fluids via a solid–fluid SL with application to
petroleum exploration. Also, we have shown the possibility of
existence of surface modes in such systems depending on wether
the SL is terminated by a solid or a fluid layer [23]. In the
long-wavelength limit, an homogenization analysis has been
developed [27] to study the effective properties of propagating
modes of periodic solid layers in an ideal or viscous fluid.

To our knowledge, few works have been devoted to solid–fluid
quasi-periodic structures [28,29]. In these papers finite size FS [28]
and periodic FS [29] are studied by means of the transmission
coefficient and the localization length deduced from the
Lyapunov exponent. The Fibonacci-type structures [14] are formed
from two blocks A (fluid layer) and B (solid layer). In reference [28],
normal incidence waves through single FS have been considered
and the fragmentation of the transmission bands as a function of
the generation number has been discussed. However, the self-
similarity of the transmission spectra following a scaling law has
not been addressed in such systems. In reference [29], a periodic
repetition of a FS was considered and the splitting of the bulk
bands for normal and oblique incidence was studied by means of
the localization length. However, in order to fully characterize
the band gap structure of a Fibonacci SL made of a periodic
repetition of a given cell where each cell is constructed by a given
FS, a dispersion relation involving the Bloch wavevector k and the
pulsation X should be calculated. In this paper, we give closed form
expressions of the transmission coefficient through one FS and the
dispersion relation of a given FS repeated periodically. For one FS,
we show at normal incidence the property of self-similarity of the
transmission spectra each three generations following a scaling
law. However, at oblique incidence this property no longer exists
because of the existence of transmission zeros. For a Fibonacci
SL, we show that when the generation number increases, the pass
bands exhibit a fragmentation following a power law. Also we
show the existence of different types of gaps: stable and transient
gaps induced by the periodicity of the system and new gaps
induced by the transmission zeros. These latter gaps are a charac-
teristic of solid–fluid SL and do not exist in solid–solid SL. These
bulk properties have not yet been addressed in the literature. In
addition to bulk modes we show for the first time the possibility
of existence of surface modes in solid–fluid Fibonacci SLs. These
modes show different behaviors depending on whether they fall
inside stable gaps or transient gaps.

The rest of the paper is organized as follows: in Section 2 we
give a brief presentation of the method of calculation employed
here, which is based on the Green function method. Section 3 is
devoted to the discussion of the numerical results for the trans-
mission along a given Fibonacci sequence for normal and oblique
incidence and the dispersion curves for bulk and surface modes
in Fibonacci SL. The final section contains the concluding
remarks.

2. Method of theoretical and numerical calculation

2.1. Interface response theory of continuous media

In this paper, we consider a multilayered structure made of
solid and fluid layers arranged perpendicularly to the x3 direction.
The planes of the layers are contained within the ðx1; x2Þ directions.
The acoustic waves propagating through such a system are polar-
ized in the sagittal plane defined by the normal to the interfaces
(x3 direction) and the wave vector k== (parallel to the interfaces).
We choose k== along the x1 direction without loss of generality.
We consider a non viscous fluid layer for which the viscous skin

depth r ¼ ð2g=qxÞ1=2 is much smaller than the fluid layer thick-
ness df over a very broad frequency range (g and q are the viscosity
and the density of the fluid). This study is performed with the help
of the interface response theory [30] of continuous media which
permits us to calculate the Green’s function of any composite
material. In what follows, we present the basic concepts and the
fundamental equations of this theory [30].

Let us consider a composite system defined in its whole space
domain labeled D. This system contains different subsystems i con-
nected together by their interface domains Mi. The whole interface
space of the system is labeled M ¼

S
Mi. The elements of the

Green’s function gðDDÞ of any composite material can be obtained
from [30]

gðDDÞ ¼ GðDDÞ � GðDMÞG�1ðMMÞGðMDÞ

þ GðDMÞG�1ðMMÞgðMMÞG�1ðMMÞGðMDÞ; ð1Þ

where GðDDÞ is the Green’s function of a given continuous medium
and gðMMÞ is the Green’s function of the composite system in its
interface domain M. As we are interested in elastic waves in solid
and fluid media, the corresponding Green’s functions GðDDÞ can
be derived from the equation of motion of displacement fields as

explained in Ref. [30]. The inverse ½gðM;MÞ��1 of gðMMÞ is obtained
as a superposition of the different g�1

i ðMi;MiÞ [30], inverse of the
giðMi;MiÞ for each constituent i of the composite system.

The inverse of gðMMÞ enables us to obtain the eigenmodes of a
composite system through the relation [30]

det½g�1ðMMÞ� ¼ 0; ð2Þ

UðDÞ being an eigenvector of the reference system, Eq. (1) leads to
the eigenvectors uðDÞ of the composite material as

uðDÞ ¼ UðDÞ � UðMÞG�1ðMMÞGðMDÞ

þ UðMÞG�1ðMMÞgðMMÞG�1ðMMÞGðMDÞ: ð3Þ

In Eq. (3), UðDÞ;UðMÞ, and uðDÞ are row vectors. If UðDÞ is a bulk
wave launched in one homogeneous piece of the composite mate-
rial, then Eq. (3) enables the calculation of all the waves reflected
and transmitted by the interfaces, as well as the reflection and
transmission coefficients of the composite system [1].

2.2. Inverse surface Green’s functions of the elementary constituents

As mentioned above, the calculation of the Green’s function of
any composite material made of solid and fluid layers, within the
interface response theory, requires the knowledge of the surface
elements of its elementary constituents, namely, the Green’s func-
tion of an ideal fluid of thickness df , sound speed v f and mass den-
sity qf and an elastic isotropic solid characterized by its thickness
ds, longitudinal speed v ‘, transverse speed v t , and mass density qs.
In addition, the calculations of the dispersion relations and
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