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a b s t r a c t

Minimum variance beamforming has performed significant improvement in the resolution of the
ultrasound images. However, its computational complexity is a serious problem. This paper introduces
a new implementation of the minimum variance beamformer for ultrasound imaging with a focused
transmit beam. In this method, a decimated aperture data instead of full of it, is used as the beamformer
input, on which the minimum variance beamforming is applied, with the covariance matrix estimated
using the full aperture data. In this way, the method can give a linear complexity while it can show a
performance comparable to that of the full array implementation of the minimum variance beamforming,
as the simulation and experimental results confirm this. Therefore, this adaptive beamforming method
can be viewed as an approximate implementation of the minimum variance beamforming with a linear
computational complexity.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Medical ultrasound imaging is conventionally done through a
delay and sum (DAS) beamformer. This data independent beam-
former applies a preset apodization on the signals transmitted or
received by the array elements to control the beampattern proper-
ties. In contrast, data dependent adaptive beamformers update the
apodization vector for each point of image, so that the signals
received from the points far from the point of interest are lowered.

The minimum variance (MV) beamforming is one of the most
widely studied adaptive beamforming methods for ultrasound
imaging [1–6], which has shown significant improvement in the
resolution of the ultrasound images. In spite of its capability in
the enhancement of the image, the computational complexity is
a major drawback of it, which makes its application in real time
ultrasound imaging a serious problem. While the conventional
delay and sum (DAS) beamformer requires the computation load
at the order of N (i.e. OðNÞ) at each time, that of the MV is OðN3Þ,
where N is the number of array elements. This complexity is a cost
paid for the enhancement achieved by the MV method.

One way proposed to reduce the computational complexity of
the MV is the beamspace domain MV beamformer [7,8]. This
method employs the fact that the signals received from the points
far from the focal points are very small and negligible, as a result of
the focusing applied on the transmission. In this way, a good
approximate implementation of the MV beamforming is reached.

In [9], the authors proposed a method to obtain a covariance
matrix in a Toeplitz structure, based on which the inverse of the
matrix can be computed using a fast algorithm. Both of these
methods reduce the complexity to OðN2Þ, while performing a per-
formance comparable to that of MV.

Synnevag et al. [10] have proposed a low complexity adaptive
(LCA) beamforming method based on the MV beamforming idea
with a complexity of OðNÞ. The method is based on the evaluation
of the beamformer output for a set of predefined apodization and
applying the best one. The evaluation criterion was an approximate
value of the output power acquired through a temporal averaging.
The method gives significant improvement in image resolution
compared with the DAS. To retain the complexity to OðNÞ, they
have ignored the spatial averaging and this restricts its capability
to enhance the resolution. Moreover, the window design should
be carefully done and may be application-dependent. The LCA also
shows some artifacts on the image because of the discrete solution
space used.

This paper describes a new method to reduce the complexity of
the MV. This method named as decimated minimum variance
(DMV) beamformer uses the same fact used in the beamspace
MV [7]; but applying it in array domain, instead of transform
domain (beamspace). The key feature of the method is the decima-
tion of the array without significant degradation of the obtained
image. This feature reduces the number of weights which are adap-
tively calculated; however the covariance matrix is estimated
through using all data received by the array. This property distin-
guishes the new method from applying the MV on a sparser array.

http://dx.doi.org/10.1016/j.ultras.2015.02.005
0041-624X/� 2015 Elsevier B.V. All rights reserved.

E-mail address: smsakhaei@nit.ac.ir

Ultrasonics 59 (2015) 119–127

Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/locate /ul t ras

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultras.2015.02.005&domain=pdf
http://dx.doi.org/10.1016/j.ultras.2015.02.005
mailto:smsakhaei@nit.ac.ir
http://dx.doi.org/10.1016/j.ultras.2015.02.005
http://www.sciencedirect.com/science/journal/0041624X
http://www.elsevier.com/locate/ultras


In this way, the DMV beamformer is an approximate implementa-
tion of the MV and is capable to reduce the complexity to OðNÞ,
even with spatial and temporal averaging.

The paper is organized as follows. The next section describes
the new method through mathematical expression. Section 3 is
devoted to the way of estimating the covariance matrix and then
some designing considerations are discussed in Section 4. The
simulation results are given in Sections 5, including some discus-
sions on resolution, contrast and robustness properties and the
comparison with the DAS and MV methods. The performance of
the method on the experimental data is presented in Section 6
and concluding remarks are given in Section 7.

2. The method

In array imaging systems, echo signals from the focal point
arrived at individual transducer array elements are coherent and
those emanating from the points far from the focal point are inco-
herent. It means that in the spatial frequency domain, the low fre-
quency components are related to the signals received from the
focal point [11]. Assuming dynamic receive focusing in the ultra-
sound imaging; this fact is valid for each imaging point. Therefore,
high spatial frequency components are thrown away to obtain a
good viewing image. This filtering process can simply be per-
formed by smoothing the array signals through summation or a
smooth weighting and then summation, as it is done in the con-
ventional beamforming methods.

The aforesaid fact can be utilized in the MV beamforming to
reduce its computational complexity. Assume that the array sig-
nals are filtered by a spatial frequency low pass filter to obtain a
low pass array signal. Considering this filter as a decimation filter,
the filtered array signal can be down-sampled or decimated in
space with no significant aliasing distortion which means the fil-
tered data can be recovered from its decimated version. Therefore,
the minimum variance beamforming can be applied on the
decimated-filtered data instead of the full data of the primary
array, while the performance is almost preserved.

It is worth to note that the transmit focusing makes the desired
signal be a narrow band in the spatial frequency domain. This fea-
ture permits a high value for the down sampling rate, even with no
decimation filter. This is in agreement with the results reported by
Nilsen et al. [7] where the beamspace adaptive beamforming
through using 3 beams have shown an acceptable performance.

Consider an array of N equally spaced elements, and assume
that~x½k� is the primary array signal at time k after applying delays

for dynamic receive focusing and~f is the tap weight vector of a J-
length spatial FIR filter used for smoothing the signal (J < N). The
array signal after filtering is the convolution of the filter tap and
the array signal ~x½k� as follows:

~xf ½k� ¼ F~x½k� ð1Þ

where F is the convolution matrix for vector ~f and ~xf ½k� a
M ¼ N � J þ 1 length vector, is the filtered array signal. Now,
assume that ~xf ½k� is decimated to a Nd-length vector called ~xd½k�,
such that~xf ½k� and~xd½k� are related through the following equation:

xd;m½k� ¼ xf ;ðm�1Þrþ1½k� ð2Þ

where the second subscript represents the element number and
r ¼ M�1

Nd�1 is the decimation factor, which is assumed to be an integer.

The element-wise relation in (2) can be expressed in a matrix form
as:
~xd½k� ¼ Id~xf ½k� ð3Þ

where Id is a Nd �M matrix obtained through decimation on col-
umn of a M �M identity matrix:

½Id�n;m ¼
1; m ¼ ðn� 1Þr þ 1
0; otherwise

�
ð4Þ

The beamforming process is applied on the decimated data:

y½k� ¼ ~wH
d ½k�~xd½k� ð5Þ

where ~wd is the apodization vector and y is the beamformer output.
In the minimum variance beamforming approach, the apodization
vector is calculated to minimize the mean power of output which
is obtained through the following optimization problem:

Min E½jy½k�j2� ¼ ~wH
d Rd~wd

n o
subject to : ~wH

d
~1 ¼ 1

ð6Þ

where the steering vector ~1 is a Nd � 1 vector of one, assuming
dynamic receive focusing, and Rd is the covariance matrix of the
decimated data vector:

Rd ¼ E ~xd~xH
d

� �
ð7Þ

The optimal vector ~wd can be expressed as follows:

~wd ¼
R�1

d
~1

~1T R�1
d
~1

ð8Þ

It is seen that the decimated MV is an algorithm with OðN3
dÞ

computational complexity for the matrix inversion, instead of
OðN3Þ in the standard MV.

It is worth to note that if the main sources of the interference
signals are assumed those near to the point of interest, the weights
on the decimated array can be calculated such that the output
power of the primary array is a scaled version of that of the
decimated array (see Appendix A). As a result, the minimum power
of MV beamformer on the primary array can be reached through
applying optimal weights in (8) on the decimated one. Hence,
using MV on the decimated array will obtain an image similar to
that obtained by the primary full array.

To get a robust response, the MV beamformer usually uses a
diagonally load covariance matrix. This technique can be utilized
in the DMV and the covariance matrix Rd can diagonally be loaded
by a factor a as follows:

Rd ¼ Rd þ
a

Nd
traceðRdÞI ð9Þ

3. The spatial and temporal averaging

In MV beamformer, the usual way to estimate the covariance
matrix through using the single snapshot data is the subarray aver-
aging method. In this method, estimation is done by dividing the
aperture into overlapping subarrays and averaging the covariance
matrices of each subarray. For the decimated MV, the subarrays
are built on the filtered array and then each subarray is decimated
into Nd elements, where averaging is done over these decimated
subarrays. Assuming each subarray has length L and M is the length
of the filtered array, P = M � L + 1 subarrays can be used in averag-
ing. Also, consider ~xp as a Nd � 1 vector containing the decimated
data of p’th subarray. Then the decimated covariance matrix is esti-
mated as:

bRd½k� ¼
1
P

XP

p¼1

~xp½k�~xH
p ½k� ð10Þ

This technique for estimating the covariance matrix can be con-
sidered as the decimation in columns and rows of the covariance
matrix of the full array data (see Appendix A). In a similar way,
the covariance matrix can be estimated through the temporal
and spatial averaging:
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