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a b s t r a c t

The inertia force caused by an additional mass layer is usually adopted to simulate the effective mechan-
ical boundary condition in a quartz crystal microbalance (QCM), which may yield incorrect results when
the upper layer becomes relative thicker. Thus, a detail analysis of the thickness shear vibration in a QCM
for detecting the characteristics of the upper isotropic layer is proceeded based on a second-order
approximation of Taylor series. The result calculated by this method has a higher accuracy than that of
inertial-force approximation. According to these outcomes, the free and forced vibration has been illus-
trated, as well as transient effects during the switching on/off processes or under a sudden fluctuation of
the driving-voltage amplitude or frequency. It has been revealed by numerical simulation that the addi-
tional mass layer has a great influence on the mechanical performance of QCM, including the resonance
frequency, amplitudes of displacement and admittance, response time of the transient processes, and so
on. These findings can prove effective guidance for physical phenomenon explanations and experimental
measurement in mass sensor devices.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Owning to its advantage of high sensitivity and distinguishabil-
ity, the quartz crystal microbalance (QCM) has been regarded as
very convenient to detect physical property changes of thin layers
at its surfaces, which has been widely used in many regions, such
as physics, biology, chemistry and medicine [1]. By changing the
quality of the material under test into frequency signal, QCM can
be applied to measure the properties of affiliated layer [2]. Some-
times, the resonance frequency can be reached gigahertz, with its
thickness typically in the range of some micro-meters. Hence, it
is easy to measure mass densities of the attached layer down to
a level of 1 lg/cm2 [3,4].

The frequency of oscillation, which is partially dependent on the
thickness of the mass layer, is the basic performance index of the
QCM. During the past decades, the effect of some mechanical char-
acteristics on resonance frequency of QCM have been extensively
investigated, including visco-elasticity [1], inhomogeneity of mass
layer [5], imperfection of connected interface [6], electrical admit-
tance [7], and so on. Among these explorations mentioned above,
an inertia force caused by the thin layer is usually applied for the

description of mechanical boundary condition at the upper surface
of the crystal plate [5,8,9], which replaces a detailed analysis of
mechanical and electrical coupling. Based on this simplification,
Sauerbrey’s equation provides a simple computational formula
about resonance frequency, which is proportional to the mass of
the film attached [1]. However, it has been pointed that this kind
of simplification may yield incorrect results especially when the
upper layer becomes relative thicker [10]. Both the mass and
stiffness effects must be considered during the analysis. Hence,
the present paper will introduce a second-order approximation
of Taylor series, which will be more accurate than the previous
inertial-force approximation.

On the other hand, owning to the piezoelectricity of AT-cut
crystal plate, an alternative voltage applied on its two surfaces is
usually used to excite a particular vibration mode. Another
phenomenon, transient effect [11,12], is inevitable during the exci-
tation process of QCM. For instance, the initial switching-on from
rest, followed by a sudden switching-off caused by the interruption
of incident current, fluctuations in the driving voltage or the
frequency, and thermal and mechanical shocks, and so forth. They
can disturb resonator operation evidently. There have been a few
attempts to study the transient effect on the thickness-shear vibra-
tion in quartz crystal resonators [13–15]. However, the theoretical
model mentioned above is simplified as a single infinite piezoelec-
tric plate. To the best of our knowledge, little work has been
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performed so far to discuss the transient effect in the composite
layered structures, which contains at least two different materials.
However, this is significant for the design of high-quality electronic
devices.

Synthesis above, a systematic investigation, including reso-
nance frequency solving, forced vibration analysis, and some tran-
sient responses, on the thickness shear vibration performance of
QCM is carried out in present contribution by using of a second-
order approximation of Taylor series. The dispersion equation has
been obtained from linear elastic theory, which can be reduced
to a few known elastic or quasi-static piezoelectric solutions. Based
on this equation, the effect of affiliated mass layer on some prop-
erty indices of thickness shear mode, such as resonance frequency,
displacement distribution, admittance amplitude, and transient
response time, has been revealed numerically. Finally, some con-
clusions are given.

2. Thickness-shear vibration analysis

QCM is inexpensive owning to its simple configuration. For our
purpose it is sufficient to consider an AT-cut quartz plate having a
thickness of 2h and a mass density q in Fig. 1. Meanwhile, an addi-
tional mass layer with its thickness and mass density being 2h0 and
q0 respectively is perfectly bonded on its upper surface. The origin
of coordinates is set on the middle plane of the AT-cut quartz plate
without loss of generality. Meanwhile, the alternating voltage
±Vexp(ixt) which are respectively imposed on the upper and bot-
tom surfaces of the crystal plate, i.e., x2 = ±h, are used to excite the
thickness shear vibration. Here, x is the circular frequency, t
stands for time, and i2 = �1. Generally speaking, the thickness
shear vibration may be coupled to flexure and face shear motions,
and this kind of coupling depends on the plate dimensions [16]. It
has been revealed that at certain length/thickness ratio, thickness
shear vibration can be excited independently [16]. Hereby, the dis-
placement vector u and electric potential u in the AT-cut crystal
plate can be described by

u1 ¼ u1ðx2; tÞ; u2 ¼ u3 ¼ 0; u ¼ uðx2; tÞ: ð1Þ

By virtue of constitutive and geometric relations, dynamic
equations and Maxwell’s law, the governing equations correspond-
ing to u1 and u are
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where c66, e26, e22 are the elastic and piezoelectric coefficients and
dielectric permittivity, respectively. The thickness shear vibration
solution in the AT-cut quartz plate can also be expressed as [4,6,10]

u1 ¼ A1 cosðnx2Þ þ A2 sinðnx2Þ½ � expðixtÞ;
u ¼ e26

e22
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in which A1, A2, A3, and A4 are undetermined coefficients, and
n ¼ xffiffiffiffiffiffiffiffiffi

�c66=q
p is the wave number with the relative piezoelectric

stiffness �c66 ¼ c66 þ
e2

26
e22

. Hence, the corresponding stress and electric

displacement components are:

T12 ¼ f�c66n½�A1 sinðnx2Þ þ A2 cosðnx2Þ� þ e26A3g expðixtÞ;
D2 ¼ �e22A3 expðixtÞ:

�
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Once the thickness shear mode is excited, the mass layer will
vibrates following the plate’s motion with its displacement compo-
nents being

u01 ¼ u01ðx2; tÞ; u02 ¼ u03 ¼ 0: ð5Þ

where u0 stands for the displacement vector of the attached mass
layer. Based on Eq. (5), the stress component T 012 and equilibrium
equation can be obtained as:

T 012 ¼ l0 @u01
@x2

;
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@x2
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@t2 ; ð6Þ

with l0 representing elastic coefficient of the mass layer. By using of
Eq. (6), we can get the following relation
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A quartz crystal microbalance is widely used to measure the
characteristics of an additional thin layer upon its surface by
calculating the frequency shift. Specifically, the layer is so thin
compared with the quartz plate, i.e., let 2h0 be small, that we can
expand the expression of stress T 012 at x2 = (h + 2h0) into Taylor
series at x2 = h [8,17]:

T 012ðhþ 2h0Þ ¼ T 012ðhÞ þ 2h0
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In present contribution, we only consider the second-order
approximation of Taylor series for simplification. Owning to the
fact that the top surface of mass layer is traction free, i.e.,
T 012ðhþ 2h0Þ ¼ 0, substituting Eq. (9) into Eq. (8) yields

1� 2ðn0h0Þ2
h i

T 012ðhÞ � 2h0q0x2u01ðhÞ ¼ 0: ð10Þ

where n0 ¼ xffiffiffiffiffiffiffiffi
l0=q0
p is the wave number of the layer. If we only con-

sider the first-order approximation in Eq. (9), i.e., the terms contain-
ing h02 should be zero, Eq. (10) can be degenerated as

T 012ðhÞ ¼ 2h0q0x2u01ðhÞ: ð11Þ

which is the boundary condition that is usually used in previous
research [1,9], i.e., only considering the inertial force caused by
the mass layer. In this paper, we will discuss the performance of
QCM based on the second-order approximation described by
Eq. (10) that is more accurate than those previous works.

The other boundary conditions at x2 = ±h requires

T12ð�hÞ ¼ 0; uð�hÞ ¼ �V : ð12Þ

T12ðhÞ ¼ T 012ðhÞ; u1ðhÞ ¼ u01ðhÞ; uðhÞ ¼ V : ð13Þ

Substituting the displacement and stress expressions, i.e.,
Eqs. (3) and (4), into the above boundary conditions, i.e.,
Eqs. (10), (12) and (13), yields four linear homogeneous algebraic
equations for coefficients A1, A2, A3, and A4:

�c66n½A1 sinðnhÞ þ A2 cosðnhÞ� þ e26A3 ¼ 0; ð14aÞ

Mass layer (ρ ′, μ ′, 2h′) 
x2

x1

x3 Quartz (ρ, c66, e26, ε22, 2h) 

Fig. 1. A quartz crystal microbalance with an additional mass layer on its surface.
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