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a b s t r a c t

This study investigates the scattering of guided waves from a discontinuity exploiting the principle of rec-
iprocity in elastodynamics, written in a form that applies to waveguides. The coefficients of reflection and
transmission for an arbitrary mode can be derived as long as the principle of reciprocity is satisfied at the
discontinuity. Two elastodynamic states are related by the reciprocity. One is the response of the wave-
guide in the presence of the discontinuity, with the scattered fields expressed as a superposition of wave
modes. The other state is the response of the waveguide in the absence of the discontinuity oscillating
according to an arbitrary mode. The semi-analytical finite element method is applied to derive the
needed dispersion relation and wave mode shapes. An application to a solid cylinder with a symmetric
double change of cross-section is presented. This model is assumed to be representative of a damaged
rod. The coefficients of reflection and transmission of longitudinal waves are investigated for selected val-
ues of notch length and varying depth.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Guided waves have played an important role in nondestructive
testing. Applications range from the detection of corrosion in pipes
or cracks in weldments to the evaluation of the state of prestress
[1]. Compared to conventional ultrasonic methods, the advantage
of guided waves is offering minimal attenuation, thus providing
larger inspection ranges. Moreover, if compared to modal analysis
[2,3], guided waves are more sensitive because of the use of higher
frequencies. Practical guided-wave ultrasonic testing is done by
sending a signal along a waveguide and interpreting the scattered
response. In the presence of a defect, this response consists of a
complex superposition of waves. The characteristics of a disconti-
nuity must be related to the amplitude of scattered fields to obtain
a quantitative evaluation of the discontinuity itself, and hence
solve the inverse problem [4].

In the simplest case, one single mode signal is used. This can be
converted to a multimode reflected or transmitted signal when
interacting with defects and discontinuities. Calculating the related
scattering coefficients is challenging. Many researchers investi-
gated the problem, and a complete review of the vast literature
is beyond the scope of the present paper. Shear and Lamb waves

in plates have attracted the most attention, while relatively little
research deals with rods, the focus of this study. Different
approaches are available, but, in general, it is necessary to resort
to numerical methods.

To clearly detect a notch, signals must be used with a wave-
length of the same order of magnitude as the notch extension.
Hence, if minor defects need to be detected, small wavelengths
and high frequencies are necessary [4–6]. In this case, the hypoth-
esis of all beam theories, namely that the cross-section of the
waveguide remains undeformed, no longer applies [7]. This calls
for different approaches for the calculus of the scattering coeffi-
cients, which can be classified into: methods based on wave expan-
sions, often referred to as mode-matching or modal decomposition
methods [8–16], finite element methods [17–19], or hybrid numer-
ical methods combining finite element formulations with wave or
boundary element approaches [6,20–24]. In these hybrid methods
only the region where the defect is present is modeled with finite
elements. Equilibrium and continuity equations are then enforced
at the boundaries. In modal decomposition methods, the scattering
coefficients deriving from the enforcement of equilibrium and con-
tinuity equations can be determined by resorting to least square
methods or to variational principles. The benefit of variational
principles as a tool for solution, such as the procedure presented
here, is that they require fewer wave modes in the modal expan-
sion than least square techniques [10,11].
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This study uses a method whereby the reflection and transmis-
sion coefficients in waveguides are obtained, using the principle of
reciprocity in elastodynamics [25,26], whose effectiveness is to
date underestimated. Reciprocity theorems in elasticity theory
provide relations between the elastic solutions (stresses, displace-
ments and strains) of two different loading states (body and sur-
face forces, constraints). The idea of connecting two states with
reciprocity to determine scattering coefficients was developed in
[9]. Analogously, here, a virtual or test wave, whose solution is
known, is used to obtain information on another elastodynamic
state, that is the response of the waveguide in the presence of
the discontinuity. Differently from [9], we assume that the defect
has a finite extension which sustains wave modes. The method
can be included in the class of modal decomposition methods
whose scattering coefficients are determined based on energy prin-
ciples, and therefore has similar advantages (reduced computa-
tional time when compared to FE or BE, reduced number of
modes to be included in the response when compared to solutions
obtained with least square methods [11]) and disadvantages (diffi-
cult treatment of defects of complex shape).

For the description of the wave propagation in the waveguide, a
technique based on the factorization of the function describing the
displacement field is used, as shown in [27]. According to this tech-
nique, the displacement field is represented as a product of a field
defined over the cross-section, which is discretized, and of a com-
plex exponential which prescribes the propagation along the
waveguide axis (Semi Analytical Finite Element method, SAFE).
Given a frequency, the solution of the eigenvalue problem, derived
from the equilibrium equations, provides the dispersion relation
and wave mode shapes, which are used to express the waveguide
response in terms of mode superposition. This SAFE approach
reduces the FEM computational burden, and waveguides of com-
plex cross-section can be easily dealt with [28].

Exploiting the reciprocity relationships between wave fields,
reflection and transmission coefficients of a wave encountering a
discontinuity can be determined by writing a squared system of
algebraic equations requiring that the reciprocity is satisfied at
the discontinuity itself. This also avoids having to solve equilib-
rium and continuity equations in a least square sense [13,24].
The proposed method can easily be applied to vertical discontinu-
ities, be they symmetric or antisymmetric, and to arbitrary cross
sections. It could also be extended to irregular changes of cross-
section or defects of complex shape resorting to an approximation
of these changes by a sequence of stair-steps, as in [15].

The study addresses the nature of scattering and has general
applicability. Once the reflection and transmission coefficients
are known, the response can be modeled again by wave-mode
superposition. An application is presented regarding a rod with a
sharp change of transverse section by varying axial extent, depth
of the notch and frequency of the incident wave.

2. Guided waves in a rod

The equations of free vibrations for a three-dimensional elastic
homogeneous isotropic solid with a free-stress boundary are:

rij;j ¼ q€ui in S; rijnj ¼ 0 on @S ð1Þ

with i; j ¼ 1;2;3, where q is the material density and rij ¼ rji are
the components of the symmetric stress tensor. The constitutive
relationships are: rij ¼ Cijkl�kl, with Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ,
where dij is the Kronecker delta, k and l are the Lamé coefficients.
Cijkl are the components of the stiffness tensor, for which the sym-
metries Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij hold, and �kl are the components of
the infinitesimal strain tensor, which can be written, in terms of dis-

placement variables ui, as: �kl ¼ uk;l þ ul;k

� �
=2. In such a way, an

explicit formulation of the elastic problem in terms of ui is obtained.
Let us consider the system depicted in Fig. 1, consisting of an

infinite solid cylinder. The coordinate system attached to its axis
is x1; x2; x3, where x1 and x2 are the cross-section coordinates
and x3 is the axial coordinate. For such a geometry, we look for
solutions of the kind

uiðx1; x2; x3; tÞ ¼ Uiðx1; x2Þeiðkx3�xtÞ ð2Þ

which represent harmonic guided waves (wave modes) propagating
along x3 with frequency x and wave-number k; i being the imagi-
nary unit. Uiðx1; x2Þ is the i-th component of the related wave mode
shape. Requiring that the displacement field has an expression such
as (2) all the derivatives with respect to x3 from the equations of
motion can be removed since:

ui;3 ¼ ikUieiðkx3�xtÞ ui;33 ¼ �k2Uieiðkx3�xtÞ; ð3Þ

where the dependence of ui;3 and ui;33 on x1; x2; x3 has been omit-
ted for the sake of brevity. Thus, the initial three-dimensional Eq.
(1) of motion are recast into a quadratic eigenvalue problem on
the cross-section S of the waveguide where k2 is the sought eigen-
value for each x. It is convenient to reformulate the eigenvalue
problem in a form linearly depending on k. This is done by adding
three new variables V1; V2; V3 contained in the vector V ¼ kU.
The resulting equations are:

ðkþ 2lÞU1;11 þ lU1;22 þ ðkþ lÞðikU3;1 þ U2;12Þ þ qx2U1 ¼ klV1

lU2;11 þ ðkþ 2lÞU2;22 þ ðkþ lÞðikU3;2 þ U1;12Þ þ qx2U2 ¼ klV2

lðU3;11 þ U3;22Þ þ ikðkþ lÞU1;1 þ ikðkþ lÞU2;2 þ qx2U3 ¼ kðkþ 2lÞV3

V1 ¼ kU1 V2 ¼ kU2 V3 ¼ kU3 ð4Þ

To these field equations, the boundary conditions of free stress must
also be imposed. For each given frequency, the resulting eigenvalue
problem has an infinite number of eigenvalues and eigenvectors
representing, respectively, wave-numbers and wave modes.

The eigenvalue problem (4) is solved here by calculating a dis-
crete numerical solution with an approach called the semi-analyt-
ical finite element method (SAFE), as the solution is in part
numerical (Uiðx1; x2Þ, defined on the cross section) and in part it
preserves its continuous features (eiðx3k�xtÞ). The eigenvectors
Uiðx1; x2Þ are assumed to be power-normalized. Let us call Rij the
ij component of the modal tensor of stress related to a given eigen-
function, obtained substituting the related strain field in the con-
stitutive equation. Power normalization requires that the wave
modes satisfy:

p2x
2

Z
S

Ujðx1; x2ÞRijðx1; x2ÞdS ¼ 1; ð5Þ

which expresses the time average of the power flow of a single
mode through the cross-section.

For a more general representation, the non-dimensional angular
frequency X and wave-number K are introduced:

X ¼ xr0=c0 K ¼ kr0 ð6Þ

x1

x2

x3

Fig. 1. Infinite solid cylinder with circular cross-section.
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