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a b s t r a c t

Helical multi-wire cables are widely used in bridges (suspended or prestressed) and anchored retaining
wall constructions. Such structures can be damaged or degraded due to corrosion and fatigue. Non
destructive evaluation techniques are required to reveal defects inside cable structures. Among these
numerous techniques, elastic guided waves are of potential interest owing to their ability to propagate
over long distances. However in civil engineering, cables are often buried or grouted in large solid media
that can be considered as unbounded. Waves can strongly attenuate along the guide axis due to the
energy leakage into the surrounding medium, which reduces the propagating distance. This energy
leakage can be enhanced in helical structures, which further complicates their inspection. Searching
modes with low attenuation becomes necessary. The goal of this work is to propose a numerical approach
to compute modes in embedded helical structures, combining the so-called semi analytical finite element
method and a radial perfectly matched layer technique. Two types of radial perfectly matched layer,
centered and off-centered, are considered. Both are implemented in a twisting coordinate system which
preserves translational invariance. The centered configuration is validated thanks to the twisted cylinder
test case. The effect of twist on the eigenspectrum is briefly discussed. Then, an embedded helical wire of
circular cross-section is considered. The off-centered configuration is shown to give the same results as
the centered one. The effect of twist on modal attenuation is investigated. Finally, computations are
performed for a seven-wire strand embedded into concrete, widely used in civil engineering cables.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Helical structures are present in various domains, such as elec-
tromagnetism and civil engineering. A typical example in civil engi-
neering is multi-wire cables, widely used in bridges (suspended or
prestressed) and anchored retaining wall constructions. Cables
can be damaged or degraded due to corrosion and fatigue. Non
destructive evaluation (NDE) techniques are required to evaluate
defects inside cable structures. Among these numerous techniques,
elastic guided waves are of particular interest owing to their ability
to propagate over long distances. Because such waves are multi-
modal and dispersive, modeling tools are required in practice for
interpreting measurements and optimizing inspection techniques.

Due to the complexity of equations in helical systems, analytical
solutions are difficult or impossible to achieve. Purely numerical
approaches have to be adopted. A classical method that has been
widely used for straight waveguides is the so-called semi-analytical

finite element (SAFE) method. This method restricts the FE discret-
ization to transverse directions only [1–4]. It has been applied for
modeling closed helical waveguides (guides in vacuum) in Ref. [5],
where the SAFE modeling of a free single helical wire has been pre-
sented based on helical coordinates. A particular twisting coordi-
nate system has then been proposed for the analysis of single
helical wires as well as multi-wire strands [6].

Regardless helicity, structural waveguides are often embedded
in large solid media that can be considered as unbounded. Waves
can radiate energy into the surrounding medium and strongly
attenuate along the guide axis, which reduces the propagation dis-
tance. Such wave modes are referred to as leaky modes [7,8]. This
energy leakage can be enhanced in curved or helical structures,
which makes their NDE more difficult. The curvature effect on radi-
ation loss has been thoroughly studied in electromagnetism [9–13]
and sometimes investigated in elastodynamics [14,15]. In the
context of NDE, searching the less attenuated modes is necessary
in order to maximize the inspection distance.

As opposed to closed waveguides, the numerical modeling of
embedded waveguides encounters two difficulties: the cross-section
is unbounded and the amplitude of leaky modes transversely
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grows [16–19]. In order to overcome these difficulties, the SAFE
method must be combined with other numerical techniques.

As far as straight waveguides are concerned, several techniques
have been recently proposed to extend the SAFE method to guides
embedded in a solid matrix. A simple numerical procedure is the
absorbing layer (AL) method proposed in Refs. [20,21], which con-
sists in creating artificial viscoelastic layers in the surrounding
medium for absorbing waves. Instead of using artificial layers,
Mazzotti et al. [22] have combined the boundary element method
(BEM) with the SAFE method, which avoids the discretization of
the unbounded surrounding domain. An alternative technique is
the perfectly matched layer (PML) method. Recently, the authors
have presented and analyzed SAFE-PML methods for modeling
embedded solid multi-layer plates [23] and three dimensional
waveguides of arbitrary cross-section [24]. These works are yet
limited to straight waveguides. In electromagnetism, a SAFE-PML
formulation has been proposed for the analysis of twisted micro-
structured optical fibers [25,26]. Yet to the authors knowledge,
the modeling of embedded helical structures has not yet been con-
sidered in elastodynamics.

The goal of this paper is to propose a SAFE-PML technique to
compute leaky modes in embedded helical structures. The twisted
SAFE-PML method is described in Section 2. The equilibrium equa-
tions of elastodynamics are written in twisting coordinates to
account for the helical geometry. In this coordinate system, a radial
PML is applied. This radial PML can be centered or off-centered.
The method is validated in Section 3 thanks to the cylindrical bar
test case, which can support any arbitrary twist. The effect of twist
on the eigenspectrum is briefly discussed. Two numerical applica-
tions are then presented in Section 4. The first example consists in
studying an embedded helical wire of circular cross-section. The
effect of twist on the axial attenuation of modes is investigated.
The second application is a seven-wire strand embedded into con-
crete. Seven-wire strands are widely used in civil engineering
cables. They are typically made by one straight cylindrical wire
surrounded by one layer of six helical wires.

2. Numerical method

2.1. Elastodynamics in twisting coordinates

Let us introduce a twisting coordinate system ðx; y; zÞ defined
from the Cartesian coordinates ðX;Y; ZÞ [6]:

x ¼ X cosðsZÞ þ Y sinðsZÞ
y ¼ �X sinðsZÞ þ Y cosðsZÞ
z ¼ Z

ð1Þ

where s denotes the torsion, which characterizes the rotation rate
of the ðx; yÞ plane along the z axis. In the Cartesian basis
ðeX ; eY ; eZÞ, the twisting basis ðex; ey; ezÞ is expressed as follows:

ex ¼ cosðsZÞeX þ sinðsZÞeY

ey ¼ � sinðsZÞeX þ cosðsZÞeY

ez ¼ eZ

ð2Þ

One considers a three-dimensional helical waveguide
~X ¼ ~S�� �1;þ1½ whose cross-section ~S lies in the transverse
ð~x; ~yÞ plane and is invariant along the z axis. The tilde notation will
be explained through the introduction of PML in Section 2.2.

The time harmonic dependence is chosen as e�ixt . Linear elastic
materials are assumed. As this study focuses on eigenmodes,
acoustic sources and external forces are discarded. In the twisting
coordinate system, the three-dimensional variational formulation
of elastodynamics is given by [6]:

Z
~X
d~�T ~rd~X�x2

Z
~X

~qd~uT ~ud~X ¼ 0 ð3Þ

where d~X ¼ d~xd~ydz. The strain–displacement relation is:

~� ¼ L~S þ Lz
@

@z

� �
~u ð4Þ

where the operators separating transverse from axial derivatives
are:

L~S ¼

@=@~x 0 0
0 @=@~y 0
0 0 K~S

@=@~y @=@~x 0
K~S �s @=@~x

s K~S @=@~y

2
666666664

3
777777775
; Lz ¼

0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

2
666666664

3
777777775

ð5Þ

with K~S ¼ s~y @
@~x� s~x @

@~y.
The formulation (3) holds for any kinematically admissible dis-

placement d~u ¼ d~uxd~uyd~uz
� �T . The superscript T denotes the matrix

transpose. The notation d~� ¼ d~�xxd~�yyd~�zz
�

2d~�xy2d~�xz2d�yz
�T is the

virtual strain vector. Similarly, ~r ¼ ½~rxx ~ryy ~rzz ~rxy ~rxz ~ryz�T denotes
the stress vector. Vector components are expressed in the twisting
basis ðex; ey; ezÞ. The stress–strain relation is given by ~r ¼ ~C~�,
where ~C is the matrix of material properties. ~q is the material mass
density. We assume that ~C and ~q depend only on the twisting
transverse coordinates ð~x; ~yÞ, which means that the problem is
translationally invariant along the z axis.

2.2. Radial PML

Let us define the cylindrical representation ðr; h; zÞ of the twist-
ing coordinates ðx; y; zÞ from: ~x ¼ xO0 þ ~r cos h; ~y ¼ yO0 þ ~r sin h. In
the ðx; yÞ plane, the point O0 of coordinates ðxO0 ; yO0 Þ is the center
of this cylindrical system. xO0 and yO0 are independent of the axial
coordinate z. As shown by Fig. 1a, the point O0 thus defines a helix
as it travels in the z direction. A helix curve can be characterized by
two parameters: Rh, the helix radius in the ðx; yÞ plane and Lh, the
helix step along the z axis. The torsion of the twisting coordinate
system attached to the helix is defined by s ¼ 2p=Lh [6]. In the
remainder of this paper, we will set yO0 ¼ 0 without loss of
generality.

For clarity, the Jacobian matrix of the transformation from
ð~x; ~y; zÞ to ð~r; h; zÞ and its inverse are given by:

J ¼
@~x=@~r @~x=@h @~x=@z

@~y=@~r @~y=@h @~y=@z

@z=@~r @z=@h @z=@z

2
64

3
75 ¼

cos h �~r sin h 0
sin h ~r cos h 0

0 0 1

2
64

3
75;

J�1 ¼
@~r=@~x @~r=@~y @~r=@z

@h=@~x @h=@~y @h=@z

@z=@~x @z=@~y @z=@z

2
64

3
75 ¼ 1

~r

~r cos h ~r sin h 0
� sin h cos h 0

0 0 ~r

2
64

3
75

ð6Þ

The formulation (3) is now transformed into cylindrical coordi-
nates, but with vectors and tensors still expressed in the basis
ðex; ey; ezÞ. One has d~X ¼ ~rd~rdhdz. The operator Lz of the strain–
displacement relation (4) is unchanged. The operator L~S is
rewritten, thanks to the Jacobian matrix J�1 in Eq. (6), by replacing
@=@~x; @=@~y and K~S with:

@

@~x
¼ cos h

@

@~r
� sin h

~r
@

@h
;
@

@~y
¼ sin h

@

@~r
þ cos h

~r
@

@h
;

K~S ¼ �sxO0 sin h
@

@~r
� s xO0

cos h
~r
þ 1

� �
@

@h
: ð7Þ

The main difficulty for modeling an embedded waveguide is the
unbounded nature of its cross-section. The basic idea proposed in
this paper consists in closing the cross-section thanks to a PML
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