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a b s t r a c t

Theoretical formulation for the problem of second harmonic guided waves in pipes is presented from the
principles of continuum mechanics. The formulation is carried out in the reference configuration of the
pipe with an emphasis on the correct use of the ‘‘Divergence’’ operator in the reference configuration.
Second harmonic guided wave generation from axis-symmetric longitudinal guided wave modes is stud-
ied. A large radius asymptotic approximation for the wave structures in pipe is studied and an error esti-
mate for the same is obtained. Comparison with the corresponding modes in a plate and the analogy to
second harmonic guided wave generation in plates is presented.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Use of nonlinear ultrasound for monitoring evolution and char-
acterization of microstructure has been a topic of interest for sev-
eral decades. Hikata et al. [1] and Hikata and Elbaum [2,3] analyzed
the problem of second and third harmonic generation due to the
presence of dislocations in materials. Cantrell [4,5] used nonlinear
ultrasound for characterizing fatigue damage accumulation in met-
als and also correlated the acoustic nonlinearity parameter (b) to
the percent remaining life of the material. While the earlier work
focused on using bulk-waves, guided waves are now considered
as an option for generating cumulative harmonics. The works by
Deng [6,7] and de Lima and Hamilton [8] laid the basis for the the-
oretical development of the problem of second harmonic guided
wave generation in plates. Later, Srivastava and Lanza di Scalea
[9] extended the problem formulation for higher harmonics in
plates. Matsuda and Biwa [10] and Chillara and Lissenden [11] pre-
sented two independent approaches to arrive at the guided wave
modes that are capable of generating cumulative second harmon-
ics. Chillara and Lissenden [12] presented a generalized approach
to study the interaction of guided wave modes in plates and pre-
sented an analysis to predict the nature of higher harmonics in
plates. While the major portion of work on nonlinear guided waves
focused on plates, de Lima and Hamilton [13] and Srivastava and
Lanza di Scalea [14] extended the approach for wave guides with
arbitrary but constant cross section and rods respectively.

In this article, we present a fully consistent formulation for the
problem of nonlinear guided waves in pipes. The problem formula-

tion is carried out using the principles of continuum mechanics and
in the reference configuration of the pipe. This article deals with
second harmonic guided wave generation from axis-symmetric
longitudinal modes and we will consider the second harmonic gen-
eration from torsional or flexural modes in a subsequent article. As
the guided wave modes in the pipes cannot be classified as either
symmetric or antisymmetric like that in a plate, we cannot obtain
generalized conclusions regarding the nature of second harmonics.
For example, we have only symmetric modes generated as second
harmonics in plates [9,11]. So, we introduce the notion of asymp-
totic modes which behave as symmetric/antisymmetric modes in
an asymptotic sense. Then, we show that the conclusions obtained
for second harmonic guided wave generation in plates can be
appropriately extended to pipes using the asymptotic solution.

The content of this article is organized as follows. Section 2 pre-
sents the preliminaries on continuum mechanics and an accurate
expression for the ‘‘Divergence’’ of the first Piola–Kirchhoff stress
tensor to be used for the problem of second harmonic guided
waves in pipes. Section 3 gives the problem formulation for second
harmonic guided wave generation from axis-symmetric longitudi-
nal modes. Then Section 4 provides the asymptotic solution that
we use in this article and Section 5 presents a comparison between
the plate and the asymptotic solution to draw conclusions regard-
ing the nature of second harmonic guided waves in pipes. Finally,
Section 6 presents conclusions.

2. Theory

Let Bj denote the reference configuration and B denote the
current configuration of the body. Let v: Bj ? B denote the
motion. Denote the position of a material particle in the reference
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configuration by X, and that in the current configuration by x. In
the present context, it is convenient to use cylindrical polar
coordinates to describe the motion. Use the unit vectors (uR,uH,uZ)
and the coordinates (R,H,Z) for the reference configuration and
(ur,uh,uz) and (r,h,z) for the current configuration. Hence,

Bj ¼ fðR;H; ZÞ : R1 < R < R2; 0 6 H < 2p;�1 < Z <1g
B ¼ fðr; h; zÞ : 0 < r <1;0 6< 2p;�1 < z <1g

where R1 and R2 are the inner and outer radii of the pipe respec-
tively. Thus, for a general motion v, we have r = r(R,H,Z),
h = h(R,H,Z) and z = z(R,H,Z).

Let F denote the deformation gradient, a two-point tensor map-
ping reference and current configuration and satisfying the fol-
lowing relation

dx ¼ F dX: ð1Þ

F can be represented as follows

F ¼ FrRur � uR þ FrHur � uH þ FrZur � uZ þ FhRuh � uR

þ FhHuh � uH þ FhZuh � uZ þ FzRuz � uR þ FzHuz � uH

þ FzZuz � uZ ð2Þ

where

FrR ¼
@r
@R

; FrH ¼
1
R
@r
@H

; FrZ ¼
@r
@Z

FhR ¼ r
@h
@R

; FhH ¼
r
R
@h
@H

; FhZ ¼ r
@h
@Z

FzR ¼
@z
@R

; FzH ¼
1
R
@z
@H

; FzZ ¼
@z
@Z

:

ð3Þ

The Lagrangian strain E is given by

E ¼ 1
2
ðFTF� IÞ: ð4Þ

Consider the material of the pipe to be hyperelastic with a strain en-
ergy function fWðEÞ given by (see [15]).

fWðEÞ¼1
2
kðtrðEÞÞ2þltrðE2Þþ1

3
CðtrðEÞÞ3þBtrðEÞtrðE2Þþ1

3
AtrðE3Þ

where k, l are the Lame’s constants and A, B and C are third order
elastic constants.

The second Piola–Kirchhoff stress tensor TRR can be obtained by
using the following relation

TRR ¼
@fWðEÞ
@E

ð5Þ

which gives

TRR ¼ ktrðEÞIþ2lEþCðtrðEÞÞ2IþBtrðE2ÞIþ2BtrðEÞEþAE2
: ð6Þ

The first Piola–Kirchhoff tensor can be obtained using the relation

S ¼ FTRR ð7Þ

Note that the first Piola–Kirchhoff stress, like the deformation gra-
dient is a two point tensor and can be represented as

S ¼ SrRur � uR þ SrHur � uH þ SrZur � uZ þ ShRuhuR þ ShHuhuH

þ ShZuhuZ þ SzRuz � uR þ SzHuz � uH þ SzZuz � uZ ð8Þ

where SrR and others are the components of S when represented
using a mixed basis.

With an eye towards the wave equation, we now consider the
expression for ‘‘Divergence’’ of a two point tensor S where the
‘‘Div’’ denotes divergence taken with respect to the coordinates
in reference configuration. Div(S) is a vector in the current config-
uration and defined as follows

DivðSTaÞ ¼ DivðSÞ � a 8 constant vector fields a 2 B ð9Þ

The divergence of the first Piola–Kirchhoff tensor is given by the fol-
lowing expression (see Appendix):

DivðSÞ¼ ›SrR
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ð10Þ

The balance of linear momentum written in reference configu-
ration along with the traction free boundary conditions is

DivðSÞ ¼ qj
€u

Snj ¼ 0
ð11Þ

where u denotes the displacement field and nj denotes the unit
outward normal to the surface of the body in the reference
configuration.

The problem formulation presented above is general in the
sense that it holds for any kind of deformation in the cylindrical
waveguides. However, we restrict our attention to longitudinal
modes in this article and deal with the torsional and flexural
modes in a follow up article.

3. Second harmonic generation: problem formulation for axis-
symmetric longitudinal guided wave modes

First, some useful expressions for first and second Piola–Kirch-
hoff stress tensors will be developed. Following [12], decompose
the expression for the second Piola–Kirchhoff stress into linear
and nonlinear parts of second order in the displacement gradient
H = Grad(U) as

TRR ¼ TL
RRðHÞ þ TNL

RRðHÞ ð12Þ

where

TL
RRðHÞ ¼

k
2

trðHþHTÞIþ lðHþHTÞ ð13Þ

and

TNL
RRðHÞ ¼

k
2

trðHTHÞIþ CðtrðHÞÞ2Iþ lHTHþ BtrðHÞðHþHTÞ

þ B
2

trðH2 þHTHÞIþ A
4
ðH2 þHT2

þHHT þHTHÞ: ð14Þ

The first Piola–Kirchhoff stress (S) can likewise be obtained by using
Eq. (7) such that

SðHÞ ¼ SLðHÞ þ SNLðHÞ ð15Þ

where

SLðHÞ ¼ TL
RRðHÞ and SNLðHÞ ¼ HTL

RRðHÞ þ TNL
RRðHÞ:

For axis-symmetric longitudinal modes, using the notation intro-
duced in the previous section, we have h = H and hence ur = uR,
uh = uH and uz = uZ. Also, the expression for the Div(S) is

DivðSÞ ¼ ›SrR

›R
þ ›SrZ
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þ SrR

R
� ShH
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