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a b s t r a c t

This work proposes a long range ultrasonic transducers technique in conjunction with an active incre-
mental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects
prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques.
One of the most prevalent techniques is the use of ‘‘smart pigs’’ to travel along the pipeline and detect
defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short
coming of ‘‘smart pigs’’ is the inability to monitor continuously and predict the onset of defects. The
emergence of permanently installed long range ultrasonics transducers systems enable continuous mon-
itoring to be achieved. The needs for and the challenges of the proposed technique are presented. The
experimental results show that the proposed technique achieves comparable classification accuracy as
when batch training is used, while the computational time is decreased, using 56 feature data points
acquired from a lab-scale pipeline defect generating experimental rig.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

This work presents an oil and gas pipeline defect prediction sys-
tem using Long Range Ultrasonic Testing (LRUT) in conjunction
with an active incremental Support Vector Machine (SVM) tech-
nique. Pipeline systems are normally safe and more effective
method for mass-scale delivery of gas and liquid formed products.
According to USA Association of Oil Pipelines, the system loses
around 1 gallon per million barrel-miles (One barrel-mile = one
barrel transported a mile) where a standard barrel contains 42 gal-
lons (159 l) [1]. In other words, less than one teaspoon of oil is
spilled per thousand barrel-miles. Pipeline systems are considered
as the most cost-effective operation as compared to railway and
road transportation in the long term [2].

The main problem faced by the oil and gas industry, having
been in operation for 185 years, is that aging pipeline systems
are being corroded and are undergoing wall thinning which can
eventually lead to pipeline failure [3]. The main causes of pipeline
failures around the world are corrosion defects such as cracking,
pitting and Stress Corrosion Cracking (SCC).

Some of the causes of pipeline failures can be avoided especially
corrosion [4]. Table 1 shows that corrosion causes 18.4% of total
accidents. Currently, pipeline inspection is done at predetermined
intervals using techniques such as pigging where operators must
be physically present to perform measurements and make judg-
ments on the integrity of the pipes. The condition of the pipe
between these testing periods, which can be for several months,
can go unmonitored. The number of factors that cause failures in
pipes are usually large and mostly unexpected. This is the main
cause for frequent pipe failures and leaks, as the defects which lead
to failure usually occur suddenly. Therefore it is crucial to imple-
ment a suitable pipeline Non-Destructive Testing (NDT) system
so that it can avoid wastage of resources, unscheduled shutdowns
and prevent catastrophic pipeline failures.

Latest advancements in sensing technology have yielded a sys-
tem that is able to continuously monitor pipeline segments using
LRUT [5]. This system is able to monitor pipelines over a distance
of several hundreds of meters from a single location using a ring
of ultrasonic transducers permanently fixed onto the pipe. LRUT
was specifically designed for inspection of Corrosion Under Insula-
tion (CUI) and has many advantages over other NDT techniques
which have seen its widespread use in many other applications
[6]. It is also able to detect both internal and external corrosion
which makes it a more efficient and cost-saving alternative. With
the recent developments in permanent mounting system using a
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special compound, the ability to perform a continuous monitoring
system has now become a reality [7]. Although this technology
exists, there is currently no continuous monitoring and prediction
software available that can automatically make real-time decisions
on the status of the pipeline [8].

The challenge for continuous monitoring using SVM is that the
conventional SVM only works with batch data. It processes all pre-
vious data to create a decision model [9]. It will need more mem-
ory and computing power as new data is acquired [10]. Hence this
technique is not suitable for a continuous monitoring system
which runs non-stop and relies on real-time data. Active incremen-
tal SVM is more suitable as it will only process newly acquired
data. It discards all previous data and as a result, the memory
demand is consistent at all the time. However, it may sacrifice
some valuable information in the discarded data and may affect
the classification accuracy [11–13]. Therefore, the proposed
approach is designed to work in active incremental mode in order
to retain high classification accuracy. Fig. 1 illustrates the differ-
ence in data points usage in the training phase of conventional
SVM compared to active incremental SVM, in different stages of
data acquisition.

This work proposes a real-time approach that uses SVM classi-
fier equipped with the active incremental training approach. More
detailed explanations on the proposed algorithm are presented in
the following sections as well as details of the experimental setup
and data acquisition. The experimental results show that the pro-
posed technique achieves low time consumption and promising
classification accuracy compared to when the SVM classifier is
trained in batches.

2. Support Vector Machine

SVM has been extensively used in pattern recognition and
regression. It has comparable computational efficiency and excel-
lent generalization capabilities. SVM was originated from Vladimir
Vapnikś in 1970, with the idea of the Structural Risk Minimization
(SRM) [14]. SVM performs recognition by forming a hyperplane

that separates two classes with a maximum distance as shown in
Fig. 2. These points are called support vectors. In many cases, data
are not linearly separable in the input space, thus non-linear trans-
formation is applied [15].

2.1. SVM as pattern classifier

SVM most often performs similar to a human’s brain in pattern
classification. It is able to identify and distinguish an object by its
shape, feature, appearance, etc. [16–18]. For example, given a set
of patterns as illustrated in Fig. 3, there are a few ways to draw a
separating line for these two classes as shown in Fig. 4.

The SVM will find a hyperplane having a maximum margin to
separate the training patterns in both classes [19]. Closest sample
points to the hyperplane are defined as ‘support vectors’ (SVs).
SVM will store only the SVs in the classification phase (see Fig. 5).

2.2. SVM formulation

Based on Fig. 2, it illustrates that the hyperplanes of the SVM are
represented by Eqs. (1)–(3). The optimal separating hyperplane of
the SVM is defined as Eq. (1). The training vectors are linearly sep-
arated by a hyperplane. The hyperplane is represented by a linear
equation in Eq. (1) where w is normal to the hyperplane and b is
the bias.

w � xþ b ¼ 0 ð1Þ

The training vectors belong to different classes which are +1
class and �1 class. Eqs. (2) and (3) represents the supporting
hyperplane.

w � xþ b ¼ þ1 for class þ 1 ð2Þ

Table 1
PHMSA all reported pipeline incidents by cause 1993–2013 (December 6, 2013).
(Source: http://primis.phmsa.dot.gov).

Reported cause of incident Number %

Corrosion 1926 18.40
Excavation damage 1950 18.60
Incorrect operation 742 7.10
Material, welding, equipment damage 2818 26.90
Natural force damage 714 6.80
Other outside force damage 765 7.30
All other causes 1535 14.60
Totals 10,450 100.00

Fig. 1. Comparison between training process of conventional SVM and active incremental SVM.

Fig. 2. Two classes of dataset.
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