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a b s t r a c t

Harmonic generation from non-cumulative fundamental symmetric (S0) and antisymmetric (A0) modes
in plate is studied from a numerical standpoint. The contribution to harmonic generation from material
nonlinearity is shown to be larger than that from geometric nonlinearity. Also, increasing the magnitude
of the higher order elastic constants increases the amplitude of second harmonics. Second harmonic gen-
eration from non-phase-matched modes illustrates that group velocity matching is not a necessary con-
dition for harmonic generation. Additionally, harmonic generation from primary mode is continuous and
once generated, higher harmonics propagate independently. Lastly, the phenomenon of mode-interaction
to generate sum and difference frequencies is demonstrated.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Use of nonlinear ultrasound for characterizing microstructure of
structural materials, especially metals, has been a topic of interest
for several decades. Initial investigations by Breazeale and Thomp-
son [1] and Hikata et al. [2] put forth elastic material nonlinearity
and dislocations as predominant causes for nonlinear ultrasonic
behavior i.e., higher harmonic generation. These results motivated
the use of higher harmonic generation for investigating nonlinear
behavior and hence material degradation in structures. Cantrell
and Yost [3] investigated fatigued microstructures using nonlinear
ultrasound. Cantrell [4] presented a comprehensive approach to
relate the nonlinearity parameter (b) to the dislocation substruc-
tures in metals. For polycrystalline nickel, a monotonic increase
in b with the fatigue cycles was predicted. The above theoretical/
experimental investigations employed bulk waves (which travel
in unbounded media) to characterize nonlinearity. On the other
hand, guided waves (which travel in bounded structures) offer sev-
eral advantages from an inspection standpoint in that long-range
inspection can be carried out from a single location. Hence these
are more amenable for structural health monitoring applications.
Nonlinear guided waves combine the penetration power of guided
waves with the early damage detection capabilities of nonlinear
ultrasound. Hence they have emerged as an attractive alternative
for detecting microstructural changes preceding macro-scale dam-
age in the structures.

Deng [5,6] analyzed second harmonic generation from guided
waves in plates. De Lima and Hamilton [7] presented a perturba-
tion based approach to analyze second harmonic generation using
the normal mode expansion technique [8] and arrived at two con-
ditions necessary for cumulative second harmonic generation,
namely phase matching and non-zero power flux. While bulk
waves satisfy the above criterion for all frequencies of excitation,
only specific guided wave modes satisfy them. These were identi-
fied [9,10] from the dispersion relations governing Rayleigh Lamb
modes in the plate and experimental investigations [11–14] cor-
roborated theoretical predictions. While the above investigations
dealt with second harmonic generation, theoretical investigations
were also carried out for predicting the nature of higher harmonic
generation from guided waves in plates. Srivastava and Lanza di
Scalea [15] concluded that cumulative even harmonics exist only
as symmetric modes while odd harmonics can exist either as sym-
metric or antisymmetric modes. Chillara and Lissenden [16] pre-
sented a generalized theory to study the nonlinear interaction of
guided wave modes. They concluded that the interaction of guided
wave modes of the same nature generate symmetric modes while
those of opposite nature generate antisymmetric modes. They also
proposed a procedure to predict the nature of higher harmonics
from the theory of mode interaction developed.

While a comprehensive theoretical framework is now available
to study higher harmonic generation from guided waves in plates,
some issues still need to be addressed. These stem from the follow-
ing issues:

1. The theoretical analysis is carried out for time-harmonic
(single-frequency continuous wave) excitations while the
experiments employ transducers with finite band-width.
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2. Group velocity matching in addition to the phase velocity
matching between the primary mode and other higher harmon-
ics was assumed to be necessary for cumulative harmonic gen-
eration [17]. However, Deng et al. [18] presented an analysis
and an experimental investigation confirming that it is not a
necessary condition. In general, all the primary Rayleigh-Lamb
modes capable of cumulative second harmonic generation in
plates satisfy group velocity matching in addition to phase
velocity matching [9]. However, with finite wave packets, it
would be interesting to examine if the higher harmonic modes
can propagate without group velocity matching as the non-
zero-power-flux criterion which requires power flow from pri-
mary to higher harmonic modes may not be satisfied once the
primary and higher modes separate due to difference in group
velocity.

3. The analysis is generally carried out using a perturbation
approach as no closed form solution is available.

4. The capability of the existing constitutive model to capture the
effect of different kinds of nonlinearities has not been
established.

In this article, we address some of the above issues using results
from numerical simulations carried out in COMSOL Multiphysics
4.3, a commercial finite element software. Specifically, we consider
the harmonic generation from the primary Symmetric (S0) and
Antisymmetric (A0) modes in a plate. While neither of the above
modes are exactly phase matched, they are deliberately chosen
to highlight some of the aspects to be discussed later. As part of
the study, we also comment on some aspects of the constitutive
model like the contribution of material and geometric nonlineari-
ties to higher harmonic generation.

The content of the article is organized as follows. Section 2 pre-
sents some continuum mechanics preliminaries. Section 3 then
presents the results obtained from numerical simulations. Finally,
conclusions are drawn in Section 4.

2. Preliminaries

In this section, we present some preliminaries intended to
enhance understanding of the results to be presented. The discus-
sion is brief so we refer the reader to [19] for more details.

We denote the deformation gradient by F and the Lagrangian
strain by E. Also, the displacement gradient is denoted by H and
the following relations exist between the above quantities.

F ¼ IþH ð1Þ

E ¼ 1
2
ðFTF� IÞ ¼ 1

2
ðHþHT þHTHÞ ð2Þ

We denote the linearized strain by El, which is related to the
displacement gradient (H) by

El ¼ 1
2
ðHþHTÞ: ð3Þ

Note that the difference between the Langrangian strain and the
linearized strain is that the second order term involving HTH is
dropped for the linearized strain. Including geometric nonlinearity
means we consider Langrangian strain (full strain) as opposed to
the linearized strain in the analysis.

A widely used constitutive model used for studying higher har-
monic generation was proposed by Landau and Lifshitz [20]. The
corresponding strain energy function is given by

WðEÞ ¼ 1
2

kðtrðEÞÞ2 þ ltrðE2Þ þ 1
3

CðtrðEÞÞ3 þ BtrðEÞtrðE2Þ þ 1
3

AðtrðE3ÞÞ:

ð4Þ

where k; l are Lame’s constants and A; B; C are higher order elas-
tic constants.

Another equivalent version of the above model is the Murna-
ghan model given by

WðEÞ ¼ 1
2

kðtrðEÞÞ2 þ ltrðE2Þ þ 1
3
ðlþ 2mÞðtrðEÞÞ3 �mtrðEÞ

� ððtrðEÞÞ2 � trðE2ÞÞ þ ndetðEÞ ð5Þ

where l; m and n are Murnaghan constants and trðÞ and detðÞ
denote trace and determinant of the tensor respectively. The rela-
tion between A; B; C and l; m; n are given in [21];
l ¼ Bþ C; m ¼ 1

2 Aþ B and n ¼ A.
The second Piola–Kirchhoff stress tensor is obtained using

TRR ¼
@WðEÞ
@E

ð6Þ

The first Piola Kirchhoff stress tensor S and Cauchy stress tensor T
are given by

S ¼ FTRR ð7Þ

and

T ¼ FSFT: ð8Þ

While the first Piola–Kirchhoff stress tensor is used for a formula-
tion in the reference configuration, Cauchy stress is used for a for-
mulation in the current configuration.

3. Numerical simulations

In this section, we present results obtained from numerical sim-
ulations performed in COMSOL 4.3. All the simulations were car-
ried out using the Murnaghan model (Eq. (5)) for Aluminum, the
elastic constants of which are tabulated in Table 1. As mentioned
earlier, fundamental symmetric and antisymmetric modes are
used in the simulation. The schematic of the 2D model used for
the simulation is shown in Fig. 1. The thickness of the plate is cho-
sen to be 1 mm and the length of the plate is assumed to be
100 mm unless otherwise specified. Triangular elements are used
to discretize the plate with a maximum element size of 0.1 mm
and a minimum element size of 0.03 mm. The resulting mesh is
then scaled by a factor of 1.5 (both along the length and the thick-
ness) to obtain a finer discretization. A maximum time step of
0.01 ls is used for the simulation. Appropriate displacement
boundary conditions are enforced on the left end of the plate to
excite the intended modes. The x-component of the displacement
is denoted by ‘u’ and the y-component is denoted by ‘v’ where
the axes are shown in Fig. 1. The dispersion curves for the plate
are shown in Fig. 2 and the primary modes used to study harmonic
generation in the plate are indicated. None of the primary modes
selected are phase matched to the secondary modes, so the second
harmonics are not known as ‘cumulative’. However, it is clear from
both the theory [7] and the results that second harmonics are
generated.

3.1. S0 mode at 0.5 MHz

In this section, we present the results obtained for the S0 mode
at 0.5 MHz. This mode is almost phase matched to the second
harmonic as the phase speed of the primary mode is 5.34 mm/ls

Table 1
Elastic constants in GPa used for simulation.

k l l m n

51 26 �250 �333 �350
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