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a b s t r a c t

When solving acoustic field equations by using numerical approximation technique, absorbing boundary
conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched
layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equa-
tion formulated as a first-order system. However, as the PML was originally designed for the first-order
equation system, it cannot be applied to the second-order equation system directly. In this article, we aim
to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit
implementation of PML for the second-order acoustic wave equation based on an auxiliary-differen-
tial-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based
on second-order equations. Compared with the existing PMLs, it has simpler implementation and
requires less extra storage. Numerical results from finite-difference time-domain models are provided
to illustrate the validity of the approach.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations of wave propagation based on partial
differential equations require the truncation of the computational
domain due to the limited memory and computation time of com-
puters. The truncation can lead to artificial reflections which can
ruin the simulating results. Absorbing boundary conditions (ABCs)
are routinely used at the truncated boundary to attenuate the
spurious reflections.

Many ABC techniques have been developed to complete this task
during past years. Among them, the PML technique, first introduced
by Berenger [1] in 1994, has been proven to be a very efficient
scheme for the truncation of unbounded domain. Berenger’s origi-
nal formulation is called the split-field PML, because he artificially
split the wave solutions into the sum of two new artificial field
components. Though first designed for the Maxwell equations in
the context of electromagnetics, the PML has now been widely used
in simulations of electromagnetic, elastic, as well as acoustic wave
propagations [2,3] for its excellent absorbing efficiency. Following
Berenger’ classical split-field scheme, a number of different imple-
mentations have been introduced [4–8], leading to the unsplit
implementations of the PML. Though these implementations often

lead to equivalent reflection properties, they offer different mathe-
matical representations which may reduce implementation costs
and complexity of the PML [4,7]. The auxiliary-differential-equa-
tion (ADE) [7,8] approach is one of important techniques that have
facilitated implementation of the PML. It provides a more flexible
representation of the PML that can be extended to higher-order
methods [7].

As the classical PML was primarily designed for first-order
equation system, it cannot be applied to the second-order system
directly. Over past years, in the field of acoustic simulation, the
PML has been mostly applied to acoustic wave equations formu-
lated as a first-order system, rarely to equations written as a sec-
ond-order system in pressure. In certain cases, a second-order
system can be rewritten as a group of first-order ones and the
PML can then be directly applied. However, this can lead to com-
plex implementation, since the second-order equation system is
simpler and more convenient to be used in many simulations.
What is more, some well-established equations, which are often
used in simulations [9–11], are not appropriate to be rewritten.
Therefore, it is meaningful to extend the PML to the second-order
acoustic equation. Several attempts have been reported to extend
the PML for second-order equations. In 2003, Komatitsch and
Tromp [12] developed a split PML for the second-order seismic
wave equation. This is first effort made to apply the PML to sec-
ond-order equations. This method was applied to the acoustic
equation in 2010 [13]. Though Komatitsch’ scheme can attenuate
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propagating waves effectively, the implementation costs of his
method is very expensive since one third-order and two second-
order ADEs have to be solved. In 2009, Pinton et al. [11] developed
an unsplit PML for the second-order acoustic equation and used it
in ultrasonic imaging simulation. Though memory-efficient and
seemingly simple, this mixed formulation of PML is not convenient
to implement in practice for a deconvolving process involved and it
is also difficult to extend to higher-order methods. In [14,15], the
convolutional PML was formulated for the second-order elastic
wave equation. As these two methods were designed for finite ele-
ment methods (FEMs), it is not convenient to apply them in solving
equations based on finite-difference time-domain (FDTD) methods
or the pseudospectral time-domain (PSTD) [16] method.

In this paper, a memory-efficient unsplit PML with a very easy
implementation is developed for the second-order acoustic equa-
tion. The proposed method is formulated via the complex coordi-
nate stretching scheme and introducing ADEs. It is a method
suitable for numerical methods such as the FDTD, PSTD and FEM.
The remainder of the paper is organized as follows. In Section 2
the background of the proposed method is introduced, and the
formulation and implementation of the proposed method is pre-
sented. The memory requirement comparison between different
schemes is also carried out. In Section 3, the proposed scheme is
verified and compared with classical split PML for the second-
order equation in numerical experiments, followed by conclusions
in Section 4.

2. Method

2.1. Background

The differential form of the linear acoustic wave equation in the
frequency domain can be written as

1
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2û ¼ @
2û
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where x denotes the angular frequency, c is the speed of the sound,
û represents the Fourier transform (FT) of the acoustic pressure u,
and j is the imaginary unit. In the interest of notational simplicity,
we only describe the solution in the x-axis using the stretched coor-
dinate approach in [5,17]. In the PML region, Eq. (1) is formulated in
complex stretched coordinates as
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where x-axis is stretched by

sx ¼ 1þ rx=jx: ð3Þ

Here rx is the damping profile across the PML region. As demon-
strated in [12,13], Eqs. (2) and (3) finally lead to

1
c2 ðjxÞ
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where rx
0 is the partial derivative of rx with respect to x. It is diffi-

cult to derive the time-domain expression of (4) directly for its
complex formulation. The general way is to introduce auxiliary
variables. A split-field scheme is proposed in [12,13], where u is
decomposed into 3 parts; each part is tackled separately, and the
results are then combined. Though this split-field approach exhibits
excellent absorbing efficiency, its numerical costs, especially the
extra needed storage, are remarkably high. What is more, the split-
ting of pressure will often lead to cumbersome implementation
when using FEM as discretization scheme [14].

2.2. The proposed method

The traditional split-field formulation of PML can actually be
viewed as an ADE-based scheme, since the splitting of pressure u
is also a way to introduce several new auxiliary variables to sim-
plify the formulation. Here we present a novel ADE-based unsplit
implementation for (4). In the following part, we denote ûi as the
FT of ui (i = 1, 2, 3). For simplicity of expression, we introduce a
temporary variable p and let

p ¼ jxþ rx: ð5Þ

Substituting p for jx on the right-side of (4), we have
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Enforcing a partial expansion scheme on the right-side of the
above equation and arrange its terms according to the order of p,
Eq. (6) becomes
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@û
@x
þ 2rx

p
@2û
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Introducing an auxiliary u1 and rearranging the above equation,
we rewrite (7) as
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where u1 satisfies

û1 ¼
r0x
p
@û
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Multiplying both sides of (9) with p, we have
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Multiplying both sides of the above equation with p, Eq. (11)
becomes
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where
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According to (13), we can easily get
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Inserting (5) into (8), (10), (12), and (14), we obtain the follow-
ing frequency domain equations in Cartesian coordinates
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