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a b s t r a c t

Wave propagation in multilayered piezoelectric structures has received much attention in past forty
years. But the research objects of previous research works are only for semi-infinite structures and
one-dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizon-
tally infinite flat plates and axially infinite hollow cylinders. This paper proposes an extension of the
orthogonal polynomial series approach to solve the wave propagation problem in a two-dimensional
(2-D) piezoelectric structure, namely, a multilayered piezoelectric bar with a rectangular cross-section.
Through numerical comparison with the available reference results for a purely elastic multilayered rect-
angular bar, the validity of the extended polynomial series approach is illustrated. The dispersion curves
and electric potential distributions of various multilayered piezoelectric rectangular bars are calculated
to reveal their wave propagation characteristics.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past four decades, wave propagation in piezoelectric
structures has received considerable attention from engineering
and scientific communities because of their applications in
ultrasonic nondestructive evaluation and transducer design and
optimization. For these piezoelectric devices, layered model
consisting of piezoelectric and non-piezoelectric layers stacked in
a certain sequence is common. Many solution methods have
been used to investigate the wave propagation in multilayered
piezoelectric structures, including analytical method [1,2] and
various numerical method. The mostly used method is the transfer
matrix method (TMM) [3–5] and the finite element method (FEM)
[6].

Because the TMM and FEM suffer from numerical instability in
some particular cases, some improvements have been developed,
such as the recursive asymptotic stiffness matrix method [7,8],
the surface impedance matrix method [9,10], the scattering-matrix
method [11] and the reverberation-ray matrix method [12].

In 1972, the orthogonal polynomial approach has been devel-
oped to analyze linear acoustic waves in homogeneous semi-infi-
nite wedges [13]. After that, this approach has been used to solve
various wave propagation and vibration problems, including sur-
face acoustic waves in layered semi-infinite piezoelectric struc-
tures [14,15], Lamb-like waves in multilayered piezoelectric
plates, [16] multilayered piezoelectric curved structures [17,18]
and multilayered magneto-electro-elastic plates [19].

So far, investigations on wave propagation in multilayered
piezoelectric structures are only for semi-infinite structures and
one-dimensional structures, i.e. structures having a finite dimen-
sion in only one direction, such as horizontally infinite flat plates
and axially infinite hollow cylinders. But in practical applications,
many piezoelectric elements have finite dimensions in two
directions. One-dimensional models are thus not suitable for these
structures. To the extent of the authors’ knowledge, wave propaga-
tion in multilayered 2-D piezoelectric structure has not been
reported. This paper proposes an extension of the orthogonal
polynomial series approach to solve wave propagation problems
in a 2-D piezoelectric structure, namely, multilayered piezoelectric
bar with a rectangular cross-section. In particular, two cases are
considered: the material stacking direction and the polarization
direction are parallel and perpendicular, respectively. Traction-free
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and open-circuit boundary conditions are assumed in this analysis.
The wave dispersion curves and the electric potential profiles of
various multilayered piezoelectric rectangular bars are presented
and discussed.

2. Problem formulation and solution method

We consider a multilayered piezoelectric rectangular bar which
is infinite in the wave propagation direction. Its width is d, the total
height is h = hN, and the stacking direction is in the z-direction, as
shown in Fig. 1. Its polarization direction is in the z direction.
The origin of the Cartesian coordinate system is located at a corner
of the rectangular cross-section and the bar lies in the positive y–z-
region, where the cross-section is defined by the region 0 6 z 6 h
and 0 6 y 6 d.

For the wave propagation problem considered in this paper, the
body forces and electric charges are assumed to be zero. Thus, the
elastodynamic equations for the rectangular bar are governed by
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where Tij, ui and Di are the stress, elastic displacement and electric
displacement components, respectively, and q is the density of the
material.

The relationships between the generalized strain and general-
ized displacement components can be expressed as
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where eij, Ei and / are the strain components, electric field and elec-
tric potential, respectively.

We introduce the function I(y, z)
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where p(y) and p(z) are rectangular window functions

pðyÞ ¼ 1; 0 6 y 6 d
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�
and pðzÞ ¼ 1; 0 6 z 6 h
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�
. By introduc-

ing the function I(y, z), the traction-free and open-circuit boundary
conditions (Tzz = Txz = Tyz = Tyy = Txy = Dz = Dy = 0 at the four

boundaries) are automatically incorporated in the constitutive
relations of the plate [14,15]
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where Cij, eij and eij are the elastic, piezoelectric and dielectric
constants respectively.

The layered bar with a stacking direction being in the z-direc-
tion is denoted as z-directional layered bar. The layered bars con-
sidered in the following are all z-directional layered bars if not
indicated specifically. The elastic constants of the layered bar are
expressed as
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where N is the number of the layers, Cn
ij is the elastic constant of the
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material coefficients can be expressed as
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For the layered bar with a stacking direction being in the y-
direction, which is refered to as y-directional layered bar, the
material constants are expressed as
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For plane time-harmonic waves propagating in the x-direction
of a rectangular bar, we assume that the displacement components
have the following form
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Fig. 1. Schematic diagram of a multilayered rectangular bar.
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