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a b s t r a c t

In this paper, the authors present a numerical approach to study the guided elastic wave propagation in
uncertain elastic media. Stochastic wave finite element method (S.W.F.E.M) formulation with consider-
ation of spatial variability of material and geometrical properties is developed for probabilistic analysis
of structures. The uncertain material properties are modelled as a set of random fields. The idea is to con-
sider the random fields as a supplementary dimension of the problem through the spatial discretisation
using the finite elements process. The stochastic forced response is formulated to study the stochastic
dynamical behavior of the structure using the appropriate boundary conditions. In this work, a SWFE
approach is employed in order to analyse the stochastic wave propagation and the numerical accuracy.
The computational efficiency of the method is demonstrated by comparison with Monte Carlo
simulations.
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1. Introduction

Guided waves are still a subject of intensive research such as
structural forms occur in several engineering areas. This research
focuses on the study of guided wave properties and applications.
Among the primary properties of guided waves to be given, we
can mention the dispersion curve and the mode shapes. Dispersion
curves give the velocity-frequency relationship for all the modes
which may propagate in the studied structure. The guided wave
mode shape gives the distribution of displacements in the normal
section to the propagation axis. A wave finite element method
(W.F.E.M) formulation provides an effective way to calculate the
dispersion curves of complex guided structures and investigates
there properties [1–4].

In the literature, however, most of founded numerical issues of
wave propagation simulations are mainly limited to deterministic

media. Numerical guided wave techniques characterisation in spa-
tially homogeneous random media is investigated in this paper.
The finite element method has been weakening in dealing with
variation of structural uncertain parameters. In this context, the
concept of a random field [5] should be studied. Due to the com-
plexity of the structure, the perturbation of its parameters that
arises from material and geometrical variability is often much
higher than conventional standard structures. An accurate predic-
tion of the uncertainty in performance of cylindrical pipes by intro-
ducing random variables or fields is thus desired. The uncertainties
are often present in geometric properties, material characteristics
and boundary conditions of the model. These variables are taken
into account in models according to the both parametric [6,7]
and non-parametric [8] approaches. Ichchou et al [6] considered
the wave propagation features in random guided elastic media
through the Stochastic Wave Finite Element Method (S.W.F.E.M)
using a parametric probabilistic technique.

In this paper, a parametric approach for uncertainties treat-
ments is considered and combined to the WFE technique. The
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method consists on considering the random fields as a supplemen-
tary dimension of the problem through the spatial discretisation
using the finite elements process.

Generally, the stochastic characteristics of the random re-
sponses can be determined by studying the design parameter
uncertainties which are often modelled by random variables.
Hence, various techniques are suggested to solve such problems
[9,10]. In the literature, there are many methods accounting for
uncertainties. Monte-Carlo simulation, first-order reliability meth-
ods [11] and second-order reliability methods [12] are the fre-
quently used methods of the reliability analysis. The primary
objective of these methods is to compute the probability of failure
associated with prescribed limit states. The second-moment
analysis methods aim at characterising the second-order statistical
moments, such as means and variance/covariance of response
quantities [13]. To consider the spatial variability, random fields
are usually used to represent the uncertain quantities [14]. By
introducing a process of discretisation, random fields are expressed
as vector of random variables. The statistics of interest of uncertain
quantities are then achieved.

Due to the efficient representation of random fields, the spectral
stochastic finite element method (SSFEM) proposed by Ghanem
and Spanos [15] has been successfully applied to various kinds of
stochastic problems. Guedri et al. [16] proposed a dynamic con-
densation method of stochastic models using a strategy combining
the stochastic finite element method (SFEM) with the robust con-
densation model based on a discretisation technique of random
fields that was established using the Karhunen–Loeve procedure
[17]. A modal perturbation (MP) approach [18] leads an efficient
calculation of the random eigenmodes and rapid synthesis of the
random frequency response, thereby avoiding the bad conditioning
of matrices around resonances. Liu [19] devised an analytical way
enabling the stochastic finite element method (SFEM) to cope with
uncertain parameter systems. This way is based on the mean cen-
tred second order perturbation method [20]. Applications of prob-
ability and perturbation concepts to standard finite element
analysis can be numerically expensive, an efficient numerical
solution procedure for the SFEM has been introduced by Liu [21].
Viktorovitch et al. [22] presented in his paper a complete and
rigorous derivation of the well-known power flow equations by
introducing two types of Gaussian random parameters in the
description of the studied structures. The first one deals with the
spatial position and the later with the location of the boundaries.
An analytical method for dynamic analysis of systems with
viscoelastic dampers has been developed by Hryniewicz [23]. The
considered system is governed by the third order differential
equation. The one-sided Green’s function for deterministic and sto-
chastic cases is derived in closed analytical form.

This contribution will extend mentioned works in order to
provide a full numerical description of the stochastic problem
simultaneously with some validations through the Monte Carlo
simulations. The main contribution of this paper seems to be the
stochastic forced response calculation. The structure is assimilated
to a periodic waveguide composed of N identical substructures.
The stochastic dynamical behavior is studied by using the
appropriate boundary conditions and following an uncertainty
introduced in the system parameters.

In this work, a SWFE approach is employed in order to analyse
the stochastic dynamical behavior. Comparisons between numeri-
cal results and Monte Carlo simulations of the stochastic formula-
tion are among the offered originalities of this work.

The paper contains 5 sections. In Section 2, the formulation of
the stochastic wave finite element approach is presented through
state vector representation. Section 3 provides the stochastic
dynamical behavior formulation. Forced response is calculated
following an uncertainty introduced in structure parameters and

using the appropriate boundary conditions. Section 4 gives
mainly numerical experiments. The formulation is general and
the validations were given using the MC simulations. A conclu-
sion together with a description of the work in progress is ulti-
mately given.

2. Stochastic wave finite element method (SWFEM) formulation

In this subsection, a stochastic medium is considered. The same
idea, such as finite element method, is used to develop the stochas-
tic wave finite element approach based on the probabilistic tools.
The idea is to consider the random fields as a supplementary
dimension of the problem through the spatial discretisation using
the finite elements process. The uncertainties are assumed to be
mostly on the material properties. Such uncertainties are assumed
to be spatially homogeneous. This guarantees the assumed period-
icity will be respected in the non-deterministic case as in the
deterministic situation. The pipe is assimilated to a periodic wave-
guide composed of N identical substructure (Fig. 1). The discretised
model leads to give the stochastic dynamical equilibrium of any
substructure k in this manner:

eD ~qL

~qR

� �
¼

eDLL
eDLReDRL
eDRR

 !
~qL

~qR

� �
¼

eF LeF R

 !
ð1Þ

This equation presents the equation of motion condensed at
the left and right boundaries of the substructure in order to re-
spect the property of periodicity of the waveguide. eD represents
the stochastic dynamic operator of the substructure, condensed
on the dof’s of the left and the right boundaries at the pulsation
x. ~q and ~F designate the stochastic displacements and loads,
respectively.

Parametric approach considers the uncertain parameters (geo-
metrical, material properties etc.) as random quantities. Specific
discretisation approaches such as the stochastic finite element
method (SFEM) which combines finite elements and probabilistic
ways of thinking can be employed [15]. In this work, we use the
parametric method to study the effect of each uncertain parameter
separately in order to classify their severity. In fact, the correlations
properties between these variables are not considered because,
really, we can neglect the interactions between geometrical and
material properties of the structure.

The random variables are modelled by Gaussian variables
through a first order perturbation, mathematically: ~v ¼ �v þ rve
where ~v is the random variable, �v its mean, rv its standard devia-
tion (perturbation) and e is Gaussian variable centred and reduced.
The polynomial chaos (1, e) is used as a supplementary dimension
of the problem. Using the polynomial chaos projection of these
variables, we can extract their means (deterministic quantity)
and their standard deviations (dispersion). The first order develop-
ment of stochastic variables is adopted, such that:

DLL þ rDLLe DLR þ rDLR e
DRL þ rDRLe DRR þ rDRRe

 !
�qL þ rqL

e
�qR þ rqR

e

� �
¼

FL þ rFLe
FR þ rFRe

 !
ð2Þ

Fig. 1. An illustration of the periodic waveguide.
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