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a b s t r a c t

As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular
and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary
ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures
are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band
structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal
honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs
is given. Through the component cell porosity controlling, the effects of component cells on the whole
responses of the structures are investigated. The intrinsic relation between the component cell porosity
and the critical porosity of Kagome honeycombs is established. These results will provide an important
guidance in the band structure design of super porous phononic crystals.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Along with the increasing demands on the light-weight design,
porous phononic crystals (PPCs), which have periodically distrib-
uted open or closed pores in bulk materials, have been widely used
due to the potential application in the multifunctional fields, which
include mechanical, thermal, and acoustic, etc. Recently, a new
kind of porous phononic crystals – linear cellular alloy (LCA), which
is constituted by two or more basic component cells, has attracted
more and more attention due to its excellent performance over to
the ordinary random cellular materials with the same porosity
[1,2]. It is noticed that a lot of researches have been carried out
to obtain the mechanical or thermal properties of these materials
[3,4]. Whereas, as one kind of phononic crystals, another important
characteristic, the existence of the absolute band gap (ABG) [5–7],
which represents frequency regions where propagating elastic
waves do not exist, also needs to be considered.

By now, some works about the wave dispersion in porous pho-
nonic crystals have been carried out. Liu et al. [8,9] investigated the
influence of pore shapes and the lattice structure, as well as the lat-
tice transformation, on the band structures in porous phononic
crystals. Wang et al. [10] discussed the ABG structures in phononic
crystals with cross-like holes. Yan and Zhang [11] analyzed the
wave localization in two-dimensional porous phononic crystals
with one-dimensional aperiodicity. Huang and Chen [12] analyzed
the acoustic waves in two-dimensional phononic crystals with
reticular geometric structures. Their results show that except for

the bulk material and lattice structure, the topological properties
of the pores have great influences on the ABG structures. Unfortu-
nately, only the structures composed by one kind of basic pores are
concentrated. Although some studies have been carried out to
investigate the mechanical or thermal properties of LCAs, the band
gap structures in these combined super porous phononic crystals,
as well as the influence of the component cells on the total ABGs,
have still not been clarified.

In order to provide some guidance in the further design of
LCAs, the wave dispersion in one kind of widely used LCAs-the
Kagome honeycomb, has been investigated. Firstly, by using
FEM simulation, the ABGs in Kagome structures are given. Then,
by fixing the lattice structure (square lattice) and comparing to
the band structures in common PPCs (PPC constituted by one
kind of component cells), the influence of the component cells
on the whole ABGs in Kagome honeycombs are analyzed, which
is helpful in the further application of LCAs in the acoustic de-
sign. At last, the conclusion is given.

2. Theory

Fig. 1 is a typical representation of the Kagome honeycomb
with a super cell (denoted by I) periodically arranged in the
2D space, and the z-coordinate is set parallel to the axes of
the pores, which are treated as vacuum. Then if the elastic
waves propagate in the transverse plane (x0y plane) with the
displacement vectors independent of the z-coordinate, they can
be decoupled into the mixed in-plane mode and the anti-plane
shear mode. Accordingly, the in-plane wave equations are ex-
pressed in the frequency domain as:
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In Eq. (1), r = (x, y) denotes the position vector, x is the angular
frequency, q is the mass density, k and l are the Lamé constant and
shear modulus, u = (ux, uy) is the displacement vector in the trans-
verse plane, and r ¼ ð@=@x; @=@y Þ is the 2D vector differential
operator. According to Bloch theorem, the displacement field can
be expressed as:

uðrÞ ¼ eiðk�rÞukðrÞ; ð2Þ

where k = (kx, ky) is the wave vector limited to the first Brillouin
zone of the reciprocal lattice and uk(r) is a periodical vector function
with the same periodicity as the crystal lattice.

Considering the periodicity of the Kagome honeycomb, if super
cell I (composed by a regular hexagon and two regular triangles) is
chosen as the unit cell, the lattice structure is parallelogram
(Fig. 2a) with the first Brillouin zone shown in Fig. 2b, that is, the
wave vector should be valued along the boundary C-T-N-C-X-M-
C-P-M to obtain the band structure, which increases the comput-
ing time. As a result, in the present manuscript, the super unit cell
II (Fig. 1) is chosen as the computational domain. The parallelo-
gram lattice is then changed to the rectangular lattice (Fig. 3a) with
the first Brillouin zone C-X-M-C-N-M (Fig. 3b), which greatly im-
proves the computational efficiency.

The Acoustic Module operating under the 2D plane strain Appli-
cation Mode (ACPN) in COMSOL is applied to solve the governing
equations. The discrete form of the eigenvalue equations in the
unit cell can be written as:

ðK�x2MÞU ¼ 0; ð3Þ

where U is the displacement at the nodes, K and M are the stiffness
and mass matrices of the unit cell, respectively. The free boundary

condition is imposed on the surface of the pore, and the Bloch
boundary conditions on the two opposite boundaries of the unit
cell, yielding:

Uðrþ aÞ ¼ eiðk�aÞUðrÞ; ð4Þ

where r is located at the boundary nodes and a is the vector that
generates the point lattice associated with the phononic crystals.

Through the maximum cell size and the change rate controlling,
the representative cell, that is, cell II, is meshed by using the trian-
gular Lagrange quadratic elements provided by COMSOL. Eigenfre-
quency analysis is chosen as the solver mode, and the direct
SPOOLES is selected as the linear system solver. Moreover, the Her-
mitian transpose of the constrain matrix and parameter settings in
symmetry direction in the advanced solver is required. The model
built in COMSOL is saved as a MATLAB-compatible ‘.m’ file. The file
is programmed to let the wave vector k sweep the edges of the
irreducible Brillouin zone, so that we can obtain the whole disper-
sion relations.

3. Numerical examples and discussion

As one kind of LCAs, the Kagome honeycomb could be seen as
the overlap of a parallel cell with a regular hexagon and two regu-
lar triangles with the same side length (see, ak/2, Figs. 1b and 4).
The porosity, which is defined as the ratio between the pore area
and the surface, is then calculated as:

fK ¼ fT þ fH; ð5Þ

where fT and fH are the porosities of the triangular and hexagonal
cells, respectively, which are given as:

fH ¼ 3ðh� tÞ2=4h2
; ð6Þ

fT ¼ ðh� 3tÞ2=4h2
; ð7Þ

with h ¼
ffiffiffi
3
p

ak=4, and t the cell wall thickness.
Obviously, the porosity of the super cell is determined by the

ones of the component cells. The porosity variation of the Kagome
honeycomb could be obtained by changing the component cell
wall thickness (hexagonal or triangular cells) equivalently
(Fig. 5a, equal cell wall structure), or separately (only letting the
cell wall thickness of one of the component cells be changed,
Fig. 5b and c, that is, different cell wall structure), which results
in the proportion variation of the component cells in the super
ones.

In our discussion, in order to see clearly the influence of the
component cells on the whole responses of the structures, the
wave dispersion in common honeycombs composed by one kind
of component cells (that is, regular triangular or hexagonal honey-
combs) is investigated firstly. Based on these results, the variation
of the band gap structures with respect to the porosity is discussed.
It should be pointed out that the band gap structures rely on the
matrix materials. Since topology is the main factor that we are
interested, only one kind of basic materials is considered. The influ-

Fig. 1. (a) The cross section of Kagome honeycombs. (b) Super unit cell of Kagome
honeycombs with ak and bk the lattice constants.

Fig. 2. (a) Parallelogram lattice. (b) The first Brillouin zone of parallelogram lattice.

Fig. 3. (a) Rectangular lattice. (b) The first Brillouin zone of rectangular lattice.
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