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The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian
beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The
quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is character-
ized by an arbitrary waist wg and a diffraction convergence length known as the Rayleigh range zz. Exam-
ples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic
sphere’s resonance frequencies for kwo <1 (where this range is of particular interest in describing
strongly focused or divergent beams), which may produce particle immobilization along the axial direc-
tion. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with condi-
tions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism
for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential
and momentum flux energy densities and their density functions. It is found that all the components van-
ish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic
absorption degrades the quasi-zero radiation force.
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1. Introduction

Quasi-Gaussian beams have been recently originated in the
wave diffraction theory as an exact solution of the Helmholtz equa-
tion. The properties of such beams have been analyzed from the
standpoint of the classical wave propagation theory based on the
complex source point method [1-8] to obtain the expression of
the pressure for the incident quasi-Gaussian beam, and expand it
using a partial-wave series [9,10]. A quasi-Gaussian beam (Fig. 1)
is characterized by an arbitrary waist wg and a diffraction conver-
gence length known as the Rayleigh range zz. Moreover, the beam
has the form of a superposition of sources and sinks with complex
coordinates [9].

In a recent investigation [11], the scattering (which is an impor-
tant phenomenon in many applications, for example nondestruc-
tive imaging applications [12,13], medical imaging etc.),
instantaneous and mean radiation forces experienced by a rigid
and immovable (fixed) sphere centered on the axis of the beam
have been investigated theoretically. Situations have been ob-
served where significant differences have occurred between the
quasi-Gaussian beam and the plane wave results for kwg <25,
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(where k denotes the wavenumber of the incident beam), however,
the plane wave results have been recovered when kwg > 25 and in-
creases toward — co.

The purpose here is to illustrate situations where the radiation
force function (which the radiation force per unit energy density
and unit cross-section) tends to zero at some of the resonance fre-
quencies of an elastic sphere and specific values of kwy. The formal-
ism for the scattering derived previously [11] is used here to
evaluate the acoustic radiation force of a quasi-Gaussian beam
on an elastic sphere in a nonviscous fluid, and correlate the back-
scattering and radiation force function plots. Moreover, the mech-
anism for the quasi-zero force is studied theoretically by analyzing
the contributions of the kinetic, potential and momentum flux en-
ergy densities and their density functions. Additional examples are
provided for a (polymer-type) viscoelastic sphere. The extension of
the previous work [11] to account for the sphere’s elasticity may be
helpful for the identification of some conditions where ultrasonic
quasi-Gaussian beams may be used to immobilize a sphere (or a
spherical shell, a layered sphere [14-16], or a layered spherical
shell [17]) in a fluid with negligible viscosity. It is important to
identify such conditions using a priori information obtained from
theoretical predictions since it may be experimentally easier to
verify the existence of zero acoustic radiation forces in quasi-
Gaussian beams using solid objects.
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Fig. 1. Instantaneous sound pressure (top panel) for a quasi-Gaussian beam at
kwo = 5. The bottom panel represents the magnitude of the pressure for k =25 x
10> m~'. The units along the axes are in mm. (see also the Supplementary
Animation).

2. Radiation force, its components and density functions

The mean (time-averaged) radiation force of a quasi-Gaussian
beam of continuous waves is expressed as [18,19],

Fus) = [[ _(imas— [[ (o v mas, (1)
So So
where
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is the Lagrangean energy density, the superscript!") denotes first-or-
der quantities, v(¥ = V¢, p» , and ¢V = Re[®V], where
@1 is the total (incident + scattered) linear velocity potential that
is related to the total pressure in the surrounding fluid.

This equation can be rewritten in terms of the following factors
[20],
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where % = p, v vV is defined as the transmlssmn momentum
flux energy density through the sphere, and 2" is the normal com-
ponent of the velocity. The three components of the radiation force
on an elastic sphere can be represented in terms of the total velocity
potential @V given by the partial-wave series as,
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where @y is the (real) amplitude. The coefficient R,, is given by [11],
Ry = Re[i"(Uy(kr) 4 iV, (kr))g, (kzg)e ™, (5)
and,
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where y,(.) are the spherical Neumann functions (or the spherical
Bessel functions of the second kind), o, = Re[S;], » = Im[S,], and S,
are the scattering coefficients determined by applying appropriate
boundary conditions at the interface fluid-structure, with the
assumption that the surrounding fluid is nonviscous. These func-
tions depend on the sphere’s elastic parameters such as the longitu-
dinal c¢;, the shear or transverse cr sound speed and the mass
densities of both the fluid po and the sphere p;. It should be empha-
sized that those coefficients are found equivalent to those obtained
from the study of acoustic scattering by plane waves (see Appendix
in [21]).

The three components of the radiation force are now expressed
as [20],
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Denoting by E = pk?|®y|?/2 the characteristic energy density, the ax-
ial time-averaged radiation force of a quasi-Gaussian beam is ex-
pressed by [11],

(Fz.rad> = YqGScE7 (10)

where S. = na? is the cross-sectional area, and Yqc is the radiation
force function, which is the radiation force per unit energy density
and unit cross-sectional surface given by [11],
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