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a b s t r a c t

The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian
beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The
quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is character-
ized by an arbitrary waist w0 and a diffraction convergence length known as the Rayleigh range zR. Exam-
ples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic
sphere’s resonance frequencies for kw0 6 1 (where this range is of particular interest in describing
strongly focused or divergent beams), which may produce particle immobilization along the axial direc-
tion. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with condi-
tions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism
for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential
and momentum flux energy densities and their density functions. It is found that all the components van-
ish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic
absorption degrades the quasi-zero radiation force.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quasi-Gaussian beams have been recently originated in the
wave diffraction theory as an exact solution of the Helmholtz equa-
tion. The properties of such beams have been analyzed from the
standpoint of the classical wave propagation theory based on the
complex source point method [1–8] to obtain the expression of
the pressure for the incident quasi-Gaussian beam, and expand it
using a partial-wave series [9,10]. A quasi-Gaussian beam (Fig. 1)
is characterized by an arbitrary waist w0 and a diffraction conver-
gence length known as the Rayleigh range zR. Moreover, the beam
has the form of a superposition of sources and sinks with complex
coordinates [9].

In a recent investigation [11], the scattering (which is an impor-
tant phenomenon in many applications, for example nondestruc-
tive imaging applications [12,13], medical imaging etc.),
instantaneous and mean radiation forces experienced by a rigid
and immovable (fixed) sphere centered on the axis of the beam
have been investigated theoretically. Situations have been ob-
served where significant differences have occurred between the
quasi-Gaussian beam and the plane wave results for kw0 < 25,

(where k denotes the wavenumber of the incident beam), however,
the plane wave results have been recovered when kw0 > 25 and in-
creases toward ?1.

The purpose here is to illustrate situations where the radiation
force function (which the radiation force per unit energy density
and unit cross-section) tends to zero at some of the resonance fre-
quencies of an elastic sphere and specific values of kw0. The formal-
ism for the scattering derived previously [11] is used here to
evaluate the acoustic radiation force of a quasi-Gaussian beam
on an elastic sphere in a nonviscous fluid, and correlate the back-
scattering and radiation force function plots. Moreover, the mech-
anism for the quasi-zero force is studied theoretically by analyzing
the contributions of the kinetic, potential and momentum flux en-
ergy densities and their density functions. Additional examples are
provided for a (polymer-type) viscoelastic sphere. The extension of
the previous work [11] to account for the sphere’s elasticity may be
helpful for the identification of some conditions where ultrasonic
quasi-Gaussian beams may be used to immobilize a sphere (or a
spherical shell, a layered sphere [14–16], or a layered spherical
shell [17]) in a fluid with negligible viscosity. It is important to
identify such conditions using a priori information obtained from
theoretical predictions since it may be experimentally easier to
verify the existence of zero acoustic radiation forces in quasi-
Gaussian beams using solid objects.
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2. Radiation force, its components and density functions

The mean (time-averaged) radiation force of a quasi-Gaussian
beam of continuous waves is expressed as [18,19],

hFradi ¼
ZZ

S0

hLindS�
ZZ

S0

hqvð1Þðvð1Þ � nÞidS; ð1Þ

where

L ¼ q0

2
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0
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2 ¼K�U; ð2Þ

is the Lagrangean energy density, the superscript(1) denotes first-or-
der quantities, v(1) =ru, pð1Þ ¼ �q0

@uð1Þ
@t , and u(1) = Re[U(1)], where

U(1) is the total (incident + scattered) linear velocity potential that
is related to the total pressure in the surrounding fluid.

This equation can be rewritten in terms of the following factors
[20],
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where R ¼ q0v ð1Þv
ð1Þ
n ; is defined as the transmission momentum

flux energy density through the sphere, and v ð1Þn is the normal com-
ponent of the velocity. The three components of the radiation force
on an elastic sphere can be represented in terms of the total velocity
potential U(1) given by the partial-wave series as,

uð1Þ ¼ Re½Uð1Þ� ¼
X1
n¼0

U0ð2nþ 1ÞRnPnðcos hÞ; ð4Þ

where U0 is the (real) amplitude. The coefficient Rn is given by [11],

Rn ¼ Re½inðUnðkrÞ þ iVnðkrÞÞgnðkzRÞe�ixt �; ð5Þ

and,

Un ¼ ð1þ anÞjnðkrÞ � bnynðkrÞ;
Vn ¼ bnjnðkrÞ þ anynðkrÞ;

ð6Þ

where yn(.) are the spherical Neumann functions (or the spherical
Bessel functions of the second kind), an = Re[Sn], bn = Im[Sn], and Sn

are the scattering coefficients determined by applying appropriate
boundary conditions at the interface fluid–structure, with the
assumption that the surrounding fluid is nonviscous. These func-
tions depend on the sphere’s elastic parameters such as the longitu-
dinal cL, the shear or transverse cT sound speed and the mass
densities of both the fluid q0 and the sphere qs. It should be empha-
sized that those coefficients are found equivalent to those obtained
from the study of acoustic scattering by plane waves (see Appendix
in [21]).

The three components of the radiation force are now expressed
as [20],
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Denoting by E = qk2|U0|2/2 the characteristic energy density, the ax-
ial time-averaged radiation force of a quasi-Gaussian beam is ex-
pressed by [11],

hFz;radi ¼ YqGScE; ð10Þ

where Sc = pa2 is the cross-sectional area, and YqG is the radiation
force function, which is the radiation force per unit energy density
and unit cross-sectional surface given by [11],

YqG ¼ �
4

ðkaÞ2
X1
n¼0

fgnðkzRÞgnþ1ðkzRÞðnþ 1Þ½an þ anþ1

þ 2ðananþ1 þ bnbnþ1Þ�g: ð11Þ

Fig. 1. Instantaneous sound pressure (top panel) for a quasi-Gaussian beam at
kw0 = 5. The bottom panel represents the magnitude of the pressure for k = 25 x
103 m�1. The units along the axes are in mm. (see also the Supplementary
Animation).
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