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a b s t r a c t

In this paper, the plane radial vibration of an isotropic metal thin circular rings is studied and its equiv-
alent circuit model is obtained. Based on the equivalent circuit model, the step-type circular ring concen-
trator consisting of two metal thin circular rings in radial vibration is analyzed. Its compound equivalent
circuit is derived and the resonance frequency equation is obtained. The relationship between the reso-
nance frequency, the radial displacement amplitude magnification and the geometrical dimensions is
analyzed. The resonance frequency of the step-type radial concentrator is calculated based on the reso-
nance frequency equation. For comparison, the resonance frequency of the step-type radial concentrator
is also obtained by using numerical method. It is illustrated that the resonance frequencies from these
two methods are in a good agreement with each other.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the fields of power ultrasonics and underwater sound, ultra-
sonic concentrators (which are also known as ultrasonic trans-
formers or ultrasonic horns) are widely used in order to focus
ultrasonic energy, magnify vibrational displacement amplitude
and convert vibrational direction. According to vibrational modes,
ultrasonic concentrators can be divided into longitudinal concen-
trators, torsional concentrators, flexural concentrators, radial con-
centrators and composite mode concentrators. For ultrasonic
concentrators, different vibrating elements are needed. The most
widely used vibrating elements include slender or short circular
rods with constant or varying cross-section, circular hollow cylin-
ders or rings, circular or rectangular plates, and their combinations.
For example, in high power ultrasonics, metal cylinders and cones
can be used as the back and front end masses of sandwich piezo-
electric ultrasonic transducers; metal rods with varying cross-sec-
tion can be used as the displacement amplitude transformer in
ultrasonic machining and ultrasonic metal and plastic welding; cir-
cular or rectangular metal plates may be used as radiating ele-
ments of vibrating systems as in ultrasonic levitation and cleaning.

Nowadays longitudinal concentrator is the most widely used
one and its design theory is well established [1–4]. The ultrasonic
concentrator in radial vibration, which consists of circular disks or

rings with varying cross-section, however, has not been studied
thoroughly. The vibration of rings and cylindrical shells has been
widely studied for over a century. Much of the related work is sum-
marized in references [5,6]. In the last few decades, some new
works are reported on the coupled vibration of cylinders, rings
and shells [7–11]. For these vibrating elements, vibrational modes
include extensional, torsional, flexural vibration and their coupling
vibrations. In general cases, the vibration of circular rings is com-
plex, exact analytical solutions are difficult to find. However, when
the geometrical dimensions of circular rings satisfy certain condi-
tions, its vibration can be greatly reduced. Kleesattel and Gladwell
studied the radial vibration of disk and ring resonators vibrating in
radial and torsional modes [12–14].

In this paper, the radial vibration of an isotropic metal thin cir-
cular ring is studied; its equivalent circuit is derived. Based on the
equivalent circuit model, the radial vibration of a step-type circular
ring concentrator is studied. Its equivalent circuit is derived and
the resonance frequency equation is obtained. The relationship be-
tween the resonance frequency, the radial displacement amplitude
magnification and the geometrical dimensions is analyzed.

2. Radial vibration of a metal thin circular ring

A metal thin circular ring in radial vibration is shown in Fig. 1.
Its thickness, outer and inner radiuses are L, a and b. In the figure,
vra, vrb and Fra, Frb are radial vibrational velocities and external
forces at the outer and inner surfaces. In polar coordinates, the
wave equations of a metal circular ring can be obtained as
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Here nr, nh, nz are radial, tangential and axial displacement compo-
nents, Tr, Th, Tz, Trh, Trz, Thz are stress components in the ring. The
relationship between the strains and the displacements are ex-
pressed as
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Here Sr, Sh, Sz, Srh, Shz, Srz are strain components. According to
Hooke’s law, the relationship between strains and stresses are
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Here G ¼ E
2ð1þmÞ is shearing modulus, E and m are Young’s modulus

and Poisson’s ratio of the ring material. It is obvious that the vibra-
tion of a metal circular ring is a complex coupled one and its analyt-
ical solutions are difficult to find. To simplify the analysis of a metal
circular ring, it is assumed that the ring is an isotropic thin circular
ring. Its thickness is much less than its radius, i.e. L� a. In this case,
we have, Tz = 0, Tzr = 0, Tzh = 0, Trh = 0, oTr

oh ¼
oTh
oh ¼

oTz
oh ¼

oTrz
oh ¼

oTrh
oh ¼

oTzh
oh ¼ 0, nz = 0, nh = 0, onh

oh ¼ 0. The above equations can be reduced
to the following forms:
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Based on these three equations, the wave equation for a metal thin
ring in radial vibration can be obtained as
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Here V2
r ¼ E

qð1�m2Þ, Vr is sound speed of radial vibration in a thin metal
circular ring. The solution to Eq. (11) is

nr ¼ ½AJ1ðkrÞ þ BY1ðkrÞ�ejxt: ð12Þ

Here k = x/Vr, x is angular frequency, J1(kr) and Y1(kr) are Bessel
functions of order one, A and B are two constants, they can be deter-
mined by the boundary conditions of the ring. From Eq. (12), the ra-
dial vibrational velocity can be obtained

vr ¼ jx½AJ1ðkrÞ þ BY1ðkrÞ�ejxt: ð13Þ

From Fig. 1, we have, when r = a, vr = � vra; when r = b, vr = vrb.
Therefore, the constants A and B can be obtained as

B ¼ 1
jx
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Substituting these two expressions into the expression of the radial
stress Tr yields
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Using the boundary conditions of Fr = Trjr=a � Sra = � Fra and
Fr = Trjr=b � Srb = � Frb, we have
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Here Sra = 2paL, Srb = 2pbL, Sra and Srb are outer and inner surface
areas of the metal ring. In Eqs. (17) and (18), J(a), J(b) and Y(a),
Y(b) are four introduced functions, their expressions are
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After some transformations, Eqs. (17) and (18) can be rewritten as
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Here Za = qVrSra, Zb = qVrSrb. Eqs. (19) and (20) can be further ex-
pressed as the following forms:

Frb ¼ ðZ1m þ Z3mÞvrb þ Z3mvra; ð21Þ
Fra ¼ ðZ2m þ Z3mÞvra þ Z3mvrb: ð22Þ
Here Z1m, Z2m and Z3m are three mechanical impedances, their
expressions are

Z1m ¼ j
2Zrb

pkb½J1ðkaÞY1ðkbÞ � J1ðkbÞY1ðkaÞ�

� J1ðkaÞY0ðkbÞ � J0ðkbÞY1ðkaÞ � J1ðkbÞY0ðkbÞ þ J0ðkbÞY1ðkbÞ
J1ðkbÞY0ðkbÞ� J0ðkbÞY1ðkbÞ

� �

� j
2Zrbð1� mÞ

pðkbÞ2½J1ðkbÞY0ðkbÞ � J0ðkbÞY1ðkbÞ�
;

Fig. 1. Geometrical diagram of a metal thin circular ring in radial vibration.
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